7,991 research outputs found

    Effects on ellipsometric parameters caused by heat treatment of silicon (111) surface

    Get PDF
    Heating of a silicon single crystal introduces a surface roughness. Crystals are heated for periods of 45 sec in the temperature range from 560 to 1150°C. Using ellipsometry, Auger electron spectroscopy, mass spectroscopy and micrography it has been shown that the changes in the ellipsometric parameters are caused by surface roughness which in turn is strongly related to the sublimation of silicon during heating. The relation between surface roughness and temperature of the crystal during the heating is not linear

    Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory

    Full text link
    Through an investigation of photoemission properties of highly-photoexcited single-walled carbon nanotubes, we demonstrate that there is an upper limit on the achievable excitonic density. As the intensity of optical excitation increases, all photoluminescence emission peaks arising from different chirality single-walled carbon nanotubes showed clear saturation in intensity. Each peak exhibited a saturation value that was independent of the excitation wavelength, indicating that there is an upper limit on the excitonic density for each nanotube species. We propose that this saturation behavior is a result of efficient exciton-exciton annihilation through which excitons decay non-radiatively. In order to explain the experimental results and obtain excitonic densities in the saturation regime, we have developed a model, taking into account the generation, diffusion-limited exciton-exciton annihilation, and spontaneous decays of one-dimensional excitons. Using the model, we were able to reproduce the experimentally obtained saturation curves under certain approximations, from which the excitonic densities were estimated. The validity of the model was confirmed through comparison with Monte Carlo simulations. Finally, we show that the conventional rate equation for exciton-exciton annihilation without taking into account exciton diffusion fails to fit the experimentally observed saturation behavior, especially at high excitonic densities.Comment: 5 figures, 1 tabl

    Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium

    Get PDF
    We present an experimental and theoretical study of the 2D dynamics of electrically charged nanoparticles trapped under a free surface of superfluid helium in a static vertical electric field. We focus on the dynamics of particles driven by the interaction with quantized vortices terminating at the free surface. We identify two types of particle trajectories and the associated vortex structures: vertical linear vortices pinned at the bottom of the container and half-ring vortices travelling along the free surface of the liquid

    Dynamics of fine particles due to quantized vortices on the surface of superfluid 4^4He

    Full text link
    Peculiar dynamics of a free surface of the superfluid 4He has been observed experimentally with a newly established technique utilizing a number of electrically charged fine metal particles trapped electrically at the surface by Moroshkin et al. They have reported that some portion of the particles exhibit some irregular motions and suggested the existence of quantized vortices interacting with the metal particles. We have conducted calculations with the vortex filament model, which turns out to support the idea of the vortex-particle interactions. The observed anomalous metal particle motions are roughly categorized into two types; (1) circular motions with specific frequencies, and (2) quasi-linear oscillations. The former ones seem to be explained once we consider a vertical vortex filament whose edges are terminated at the bottom and at a particle trapped at the surface. Although it is not yet clear whether all the anomalous motions are due to the quantum vortices, the vortices seem to play important roles for the motions.Comment: 7 pages, 10 figure

    Collisional energy transfer in two-component plasmas

    Full text link
    The friction in plasmas consisting of two species with different temperatures is discussed together with the consequent energy transfer. It is shown that the friction between the two species has no effect on the ion acoustic mode in a quasi-neutral plasma. Using the Poisson equation instead of the quasi-neutrality reveals the possibility for an instability driven by the collisional energy transfer. However, the different starting temperatures of the two species imply an evolving equilibrium. It is shown that the relaxation time of the equilibrium electron-ion plasma is, in fact, always shorter than the growth rate time, and the instability can thus never effectively take place. The results obtained here should contribute to the definite clarification of some contradictory results obtained in the past

    Electroweak strings and fermions

    Get PDF
    Z-strings in the Weinberg-Salam model including fermions are unstable for all values of the parameters. The cause of this instability is the fermion vacuum energy in the Z-string background. Z-strings with non-zero fermion densities, however, may still be stable

    Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles

    Full text link
    We have performed polarization-dependent ultrafast pump-probe spectroscopy of a film of aligned single-walled carbon nanotube bundles. By taking into account imperfect nanotube alignment as well as anisotropic absorption cross sections, we quantitatively determined distinctly different photo-bleaching dynamics for polarizations parallel and perpendicular to the tube axis. For perpendicular polarization, we observe a slow (1.0-1.5 ps) relaxation process, previously unobserved in randomly-oriented nanotube bundles. We attribute this slower dynamics to the excitation and relaxation of surface plasmons in the radial direction of the nanotube bundles.Comment: 4 pages, 3 figure

    Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields

    Get PDF
    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure
    corecore