7,991 research outputs found
Effects on ellipsometric parameters caused by heat treatment of silicon (111) surface
Heating of a silicon single crystal introduces a surface roughness. Crystals are heated for periods of 45 sec in the temperature range from 560 to 1150°C. Using ellipsometry, Auger electron spectroscopy, mass spectroscopy and micrography it has been shown that the changes in the ellipsometric parameters are caused by surface roughness which in turn is strongly related to the sublimation of silicon during heating. The relation between surface roughness and temperature of the crystal during the heating is not linear
Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory
Through an investigation of photoemission properties of highly-photoexcited
single-walled carbon nanotubes, we demonstrate that there is an upper limit on
the achievable excitonic density. As the intensity of optical excitation
increases, all photoluminescence emission peaks arising from different
chirality single-walled carbon nanotubes showed clear saturation in intensity.
Each peak exhibited a saturation value that was independent of the excitation
wavelength, indicating that there is an upper limit on the excitonic density
for each nanotube species. We propose that this saturation behavior is a result
of efficient exciton-exciton annihilation through which excitons decay
non-radiatively. In order to explain the experimental results and obtain
excitonic densities in the saturation regime, we have developed a model, taking
into account the generation, diffusion-limited exciton-exciton annihilation,
and spontaneous decays of one-dimensional excitons. Using the model, we were
able to reproduce the experimentally obtained saturation curves under certain
approximations, from which the excitonic densities were estimated. The validity
of the model was confirmed through comparison with Monte Carlo simulations.
Finally, we show that the conventional rate equation for exciton-exciton
annihilation without taking into account exciton diffusion fails to fit the
experimentally observed saturation behavior, especially at high excitonic
densities.Comment: 5 figures, 1 tabl
Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium
We present an experimental and theoretical study of the 2D dynamics of
electrically charged nanoparticles trapped under a free surface of superfluid
helium in a static vertical electric field. We focus on the dynamics of
particles driven by the interaction with quantized vortices terminating at the
free surface. We identify two types of particle trajectories and the associated
vortex structures: vertical linear vortices pinned at the bottom of the
container and half-ring vortices travelling along the free surface of the
liquid
Dynamics of fine particles due to quantized vortices on the surface of superfluid He
Peculiar dynamics of a free surface of the superfluid 4He has been observed
experimentally with a newly established technique utilizing a number of
electrically charged fine metal particles trapped electrically at the surface
by Moroshkin et al. They have reported that some portion of the particles
exhibit some irregular motions and suggested the existence of quantized
vortices interacting with the metal particles. We have conducted calculations
with the vortex filament model, which turns out to support the idea of the
vortex-particle interactions. The observed anomalous metal particle motions are
roughly categorized into two types; (1) circular motions with specific
frequencies, and (2) quasi-linear oscillations. The former ones seem to be
explained once we consider a vertical vortex filament whose edges are
terminated at the bottom and at a particle trapped at the surface. Although it
is not yet clear whether all the anomalous motions are due to the quantum
vortices, the vortices seem to play important roles for the motions.Comment: 7 pages, 10 figure
Collisional energy transfer in two-component plasmas
The friction in plasmas consisting of two species with different temperatures
is discussed together with the consequent energy transfer. It is shown that the
friction between the two species has no effect on the ion acoustic mode in a
quasi-neutral plasma. Using the Poisson equation instead of the
quasi-neutrality reveals the possibility for an instability driven by the
collisional energy transfer. However, the different starting temperatures of
the two species imply an evolving equilibrium. It is shown that the relaxation
time of the equilibrium electron-ion plasma is, in fact, always shorter than
the growth rate time, and the instability can thus never effectively take
place. The results obtained here should contribute to the definite
clarification of some contradictory results obtained in the past
Electroweak strings and fermions
Z-strings in the Weinberg-Salam model including fermions are unstable for all values of the parameters. The cause of this instability is the fermion vacuum energy in the Z-string background. Z-strings with non-zero fermion densities, however, may still be stable
Anisotropic Decay Dynamics of Photoexcited Aligned Carbon Nanotube Bundles
We have performed polarization-dependent ultrafast pump-probe spectroscopy of
a film of aligned single-walled carbon nanotube bundles. By taking into account
imperfect nanotube alignment as well as anisotropic absorption cross sections,
we quantitatively determined distinctly different photo-bleaching dynamics for
polarizations parallel and perpendicular to the tube axis. For perpendicular
polarization, we observe a slow (1.0-1.5 ps) relaxation process, previously
unobserved in randomly-oriented nanotube bundles. We attribute this slower
dynamics to the excitation and relaxation of surface plasmons in the radial
direction of the nanotube bundles.Comment: 4 pages, 3 figure
Circular-Polarization Dependent Cyclotron Resonance in Large-Area Graphene in Ultrahigh Magnetic Fields
Using ultrahigh magnetic fields up to 170 T and polarized midinfrared
radiation with tunable wavelengths from 9.22 to 10.67 um, we studied cyclotron
resonance in large-area graphene grown by chemical vapor deposition.
Circular-polarization dependent studies reveal strong p-type doping for
as-grown graphene, and the dependence of the cyclotron resonance on radiation
wavelength allows for a determination of the Fermi energy. Thermal annealing
shifts the Fermi energy to near the Dirac point, resulting in the simultaneous
appearance of hole and electron cyclotron resonance in the magnetic quantum
limit, even though the sample is still p-type, due to graphene's linear
dispersion and unique Landau level structure. These high-field studies
therefore allow for a clear identification of cyclotron resonance features in
large-area, low-mobility graphene samples.Comment: 9 pages, 3 figure
- …