18,602 research outputs found
Electric Dipole Moments in the Generic Supersymmetric Standard Model
The generic supersymmetric standard model is a model built from a
supersymmetrized standard model field spectrum the gauge symmetries only. The
popular minimal supersymmetric standard model differs from the generic version
in having R-parity imposed by hand. We review an efficient formulation of the
model and some of the recently obtained interesting phenomenological features,
focusing on one-loop contributions to fermion electric dipole moments.Comment: 1+7 pages Revtex 3 figures incoporated; talk at NANP'0
Neutrino Oscillations from Supersymmetry without R-parity - Its Implications on the Flavor Structure of the Theory
We discuss here some flavor structure aspects of the complete theory of
supersymmetry without R-parity addressed from the perspective of fitting
neutrino oscillation data based on the recent Super-Kamiokande result. The
single-VEV parametrization of supersymmetry without R-parity is first reviewed,
illustrating some important features not generally appreciated. For the flavor
structure discussions, a naive, flavor model independent, analysis is
presented, from which a few interesting things can be learned.Comment: 1+10 pages latex, no figure; Invited talk at NANP 99 conference,
Dubna (Jun 28 - Jul 3) --- submission for the proceeding
A rapid staining-assisted wood sampling method for PCR-based detection of pine wood nematode Bursaphelenchus xylophilus in Pinus massoniana wood tissue
For reasons of unequal distribution of more than one nematode species in wood, and limited
availability of wood samples required for the PCR-based method for detecting pinewood nematodes in
wood tissue of Pinus massoniana, a rapid staining-assisted wood sampling method aiding PCR-based
detection of the pine wood nematode Bursaphelenchus xylophilus (Bx) in small wood samples of P.
massoniana was developed in this study. This comprised a series of new techniques: sampling, mass
estimations of nematodes using staining techniques, and lowest limit Bx nematode mass determination
for PCR detection. The procedure was undertaken on three adjoining 5-mg wood cross-sections, of
0.5 · 0.5 · 0.015 cm dimension, that were cut from a wood sample of 0.5 · 0.5 · 0.5 cm initially, then
the larger wood sample was stained by acid fuchsin, from which two 5-mg wood cross-sections (that
adjoined the three 5-mg wood cross-sections, mentioned above) were cut. Nematode-staining-spots
(NSSs) in each of the two stained sections were counted under a microscope at 100· magnification. If
there were eight or more NSSs present, the adjoining three sections were used for PCR assays. The
B. xylophilus – specific amplicon of 403 bp (DQ855275) was generated by PCR assay from 100.00% of
5-mg wood cross-sections that contained more than eight Bx NSSs by the PCR assay. The entire
sampling procedure took only 10 min indicating that it is suitable for the fast estimation of nematode
numbers in the wood of P. massonina as the prelimary sample selections for other more expensive
Bx-detection methods such as PCR assay
Effects of quark family nonuniversality in SU(3)_c X SU(4)_L X U(1)_x models
Flavour changing neutral currents arise in the extension of the standard model because anomaly cancellation among the
fermion families requires one generation of quarks to transform differently
from the other two under the gauge group. In the weak basis the distinction
between quark families is meaningless. However, in the mass eigenstates basis,
the Cabibbo-Kobayashi-Maskawa mixing matrix motivates us to classify
left-handed quarks in families. In this sense there are, in principle, three
different assignments of quark weak eigenstates into mass eigenstates. In this
work, by using measurements at the Z-pole, atomic parity violation data and
experimental input from neutral meson mixing, we examine two different models
without exotic electric charges based on the 3-4-1 symmetry, and address the
effects of quark family nonuniversality on the bounds on the mixing angle
between two of the neutral currents present in the models and on the mass
scales and of the new neutral gauge bosons predicted by the
theory. The heaviest family of quarks must transform differently in order to
keep lower bounds on and as low as possible without
violating experimental constraints.Comment: 27 pages, 10 tables, 2 figures. Equation (19) and typos corrected.
Matches version to appear in Phys. Rev.
Transcriptomic Profiling Analysis of Arabidopsis thaliana Treated with Exogenous Myo-Inositol
Myo-insositol (MI) is a crucial substance in the growth and developmental processes in plants. It is commonly added to the culture medium to promote adventitious shoot development. In our previous work, MI was found in influencing Agrobacterium-mediated transformation. In this report, a high-throughput RNA sequencing technique (RNA-Seq) was used to investigate differently expressed genes in one-month-old Arabidopsis seedling grown on MI free or MI supplemented culture medium. The results showed that 21,288 and 21,299 genes were detected with and without MI treatment, respectively. The detected genes included 184 new genes that were not annotated in the Arabidopsis thaliana reference genome. Additionally, 183 differentially expressed genes were identified (DEGs, FDR ≤0.05, log2 FC≥1), including 93 up-regulated genes and 90 down-regulated genes. The DEGs were involved in multiple pathways, such as cell wall biosynthesis, biotic and abiotic stress response, chromosome modification, and substrate transportation. Some significantly differently expressed genes provided us with valuable information for exploring the functions of exogenous MI. RNA-Seq results showed that exogenous MI could alter gene expression and signaling transduction in plant cells. These results provided a systematic understanding of the functions of exogenous MI in detail and provided a foundation for future studies
- …