1,491 research outputs found
Dynamics of Spontaneous Magnetization Reversal in Exchange Biased Heterostructures
The dependence of thermally induced spontaneous magnetization reversal on
time-dependent cooling protocols was studied. Slower cooling and longer waiting
close to the N\`{e}el temperature of the antiferromagnet () enhances the
magnetization reversal. Cycling the temperature around leads to a thermal
training effect under which the reversal magnitude increases with each cycle.
These results suggest that spontaneous magnetization reversal is energetically
favored, contrary to our present understanding of positive exchange bias
A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury
Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1(flox/flox)). GFAP-Cre;Rac1(flox/flox) (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G(1) to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury
Characteristics of Japanese wrestlers with respect to function and structure of limbs
It is well known that hypertrophy and strength gain of the human skeletal muscle are induced by muscle training. It has also been shown that the training effect on size and strength of the skeletal muscle are altered the different athletic training protocols (1, 4). From these findings, it seems possible that wrestlers possess the hypertrophied muscle and stronger muscle strength by specific training.
In the present study, we assess the functional and structural characteristics of the skeletal muscle in Japanese wrestlers
An explanatory model for food-web structure and evolution
Food webs are networks describing who is eating whom in an ecological
community. By now it is clear that many aspects of food-web structure are
reproducible across diverse habitats, yet little is known about the driving
force behind this structure. Evolutionary and population dynamical mechanisms
have been considered. We propose a model for the evolutionary dynamics of
food-web topology and show that it accurately reproduces observed food-web
characteristic in the steady state. It is based on the observation that most
consumers are larger than their resource species and the hypothesis that
speciation and extinction rates decrease with increasing body mass. Results
give strong support to the evolutionary hypothesis.Comment: 16 pages, 3 figure
Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups
Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies
Vectorial Control of Magnetization by Light
Coherent light-matter interactions have recently extended their applications
to the ultrafast control of magnetization in solids. An important but
unrealized technique is the manipulation of magnetization vector motion to make
it follow an arbitrarily designed multi-dimensional trajectory. Furthermore,
for its realization, the phase and amplitude of degenerate modes need to be
steered independently. A promising method is to employ Raman-type nonlinear
optical processes induced by femtosecond laser pulses, where magnetic
oscillations are induced impulsively with a controlled initial phase and an
azimuthal angle that follows well defined selection rules determined by the
materials' symmetries. Here, we emphasize the fact that temporal variation of
the polarization angle of the laser pulses enables us to distinguish between
the two degenerate modes. A full manipulation of two-dimensional magnetic
oscillations is demonstrated in antiferromagnetic NiO by employing a pair of
polarization-twisted optical pulses. These results have lead to a new concept
of vectorial control of magnetization by light
- …