629 research outputs found
Anomalous lateral diffusion in a viscous membrane surrounded by viscoelastic media
We investigate the lateral dynamics in a purely viscous lipid membrane
surrounded by viscoelastic media such as polymeric solutions. We first obtain
the generalized frequency-dependent mobility tensor and focus on the case when
the solvent is sandwiched by hard walls. Due to the viscoelasticity of the
solvent, the mean square displacement of a disk embedded in the membrane
exhibits an anomalous diffusion. An useful relation which connects the mean
square displacement and the solvent modulus is provided. We also calculate the
cross-correlation of the particle displacements which can be applied for
two-particle tracking experiments.Comment: 6 pages, 2 figure
The Phase Behavior of Mixed Lipid Membranes in Presence of the Rippled Phase
We propose a model describing liquid-solid phase coexistence in mixed lipid
membranes by including explicitly the occurrence of a rippled phase. For a
single component membrane, we employ a previous model in which the membrane
thickness is used as an order parameter. As function of temperature, this model
properly accounts for the phase behavior of the three possible membrane phases:
solid, liquid and the rippled phase. Our primary aim is to explore extensions
of this model to binary lipid mixtures by considering the composition
dependence of important model parameters. The obtained phase diagrams show
various liquid, solid and rippled phase coexistence regions, and are in
quantitative agreement with the experimental ones for some specific lipid
mixtures.Comment: 8pages, 5figure
An Electron-Tracking Compton Telescope for a Survey of the Deep Universe by MeV gamma-rays
Photon imaging for MeV gammas has serious difficulties due to huge
backgrounds and unclearness in images, which are originated from incompleteness
in determining the physical parameters of Compton scattering in detection,
e.g., lack of the directional information of the recoil electrons. The recent
major mission/instrument in the MeV band, Compton Gamma Ray
Observatory/COMPTEL, which was Compton Camera (CC), detected mere
persistent sources. It is in stark contrast with 2000 sources in the GeV
band. Here we report the performance of an Electron-Tracking Compton Camera
(ETCC), and prove that it has a good potential to break through this stagnation
in MeV gamma-ray astronomy. The ETCC provides all the parameters of
Compton-scattering by measuring 3-D recoil electron tracks; then the Scatter
Plane Deviation (SPD) lost in CCs is recovered. The energy loss rate (dE/dx),
which CCs cannot measure, is also obtained, and is found to be indeed helpful
to reduce the background under conditions similar to space. Accordingly the
significance in gamma detection is improved severalfold. On the other hand, SPD
is essential to determine the point-spread function (PSF) quantitatively. The
SPD resolution is improved close to the theoretical limit for multiple
scattering of recoil electrons. With such a well-determined PSF, we demonstrate
for the first time that it is possible to provide reliable sensitivity in
Compton imaging without utilizing an optimization algorithm. As such, this
study highlights the fundamental weak-points of CCs. In contrast we demonstrate
the possibility of ETCC reaching the sensitivity below erg
cm s at 1 MeV.Comment: 19 pages, 12 figures, Accepted to the Astrophysical Journa
Lateral phase separation in mixtures of lipids and cholesterol
In an effort to understand "rafts" in biological membranes, we propose phenomenological models for saturated and unsaturated lipid mixtures, and lipid-cholesterol mixtures. We consider simple couplings between the local composition and internal membrane structure, and their influence on transitions between liquid and gel membrane phases. Assuming that the gel transition temperature of the saturated lipid is shifted by the presence of the unsaturated lipid, and that cholesterol acts as an external field on the chain melting transition, a variety of phase diagrams are obtained. The phase diagrams for binary mixtures of saturated/unsaturated lipids and lipid/cholesterol are in semi-quantitative agreement with the experiments. Our results also apply to regions in the ternary phase diagram of lipid/lipid/cholesterol systems
Elasticity of smectic liquid crystals with focal conic domains
We study the elastic properties of thermotropic smectic liquid crystals with
focal conic domains (FCDs). After the application of the controlled preshear at
different temperatures, we independently measured the shear modulus G' and the
FCD size L. We find out that these quantities are related by the scaling
relation G' ~ \gamma_{eff}/L where \gamma_{eff} is the effective surface
tension of the FCDs. The experimentally obtained value of \gamma_{\rm eff}
shows the same scaling as the effective surface tension of the layered systems
\sqrt{KB} where K and B are the bending modulus and the layer compression
modulus, respectively. The similarity of this scaling relation to that of the
surfactant onion phase suggests an universal rheological behavior of the
layered systems with defects.Comment: 14 pages, 7 figures, accepted for publication in JPC
Adhesion-induced phase separation of multiple species of membrane junctions
A theory is presented for the membrane junction separation induced by the
adhesion between two biomimetic membranes that contain two different types of
anchored junctions (receptor/ligand complexes). The analysis shows that several
mechanisms contribute to the membrane junction separation. These mechanisms
include (i) the height difference between type-1 and type-2 junctions is the
main factor which drives the junction separation, (ii) when type-1 and type-2
junctions have different rigidities against stretch and compression, the
``softer'' junctions are the ``favored'' species, and the aggregation of the
softer junction can occur, (iii) the elasticity of the membranes mediates a
non-local interaction between the junctions, (iv) the thermally activated shape
fluctuations of the membranes also contribute to the junction separation by
inducing another non-local interaction between the junctions and renormalizing
the binding energy of the junctions. The combined effect of these mechanisms is
that when junction separation occurs, the system separates into two domains
with different relative and total junction densities.Comment: 23 pages, 6 figure
- …