2,382 research outputs found

    Theory of Quark-Gluon Plasma and Phase Transition

    Full text link
    Nonperturbative picture of strong interacting quark-gluon plasma is given based on the systematic Field Correlator Method. Equation of state, phase transition in density-temperature plane is derived and compared to lattice data as well as subsequent thermodynamical quantities of QGP.Comment: 6 pages,5 figures; talk given at "13th Lomonosov Conference on Elementary Particle Physics", Moscow, August 23 -- 29, 2007; new reference adde

    Self-inhibiting thermal conduction in high-beta, whistler-unstable plasma

    Full text link
    A heat flux in a high-Ξ²\beta plasma with low collisionality triggers the whistler instability. Quasilinear theory predicts saturation of the instability in a marginal state characterized by a heat flux that is fully controlled by electron scattering off magnetic perturbations. This marginal heat flux does not depend on the temperature gradient and scales as 1/Ξ²1/\beta. We confirm this theoretical prediction by performing numerical particle-in-cell simulations of the instability. We further calculate the saturation level of magnetic perturbations and the electron scattering rate as functions of Ξ²\beta and the temperature gradient to identify the saturation mechanism as quasilinear. Suppression of the heat flux is caused by oblique whistlers with magnetic-energy density distributed over a wide range of propagation angles. This result can be applied to high-Ξ²\beta astrophysical plasmas, such as the intracluster medium, where thermal conduction at sharp temperature gradients along magnetic-field lines can be significantly suppressed. We provide a convenient expression for the amount of suppression of the heat flux relative to the classical Spitzer value as a function of the temperature gradient and Ξ²\beta. For a turbulent plasma, the additional independent suppression by the mirror instability is capable of producing large total suppression factors (several tens in galaxy clusters) in regions with strong temperature gradients.Comment: accepted to JP

    Polarization of Sunyaev-Zeldovich signal due to electron pressure anisotropy in galaxy clusters

    Full text link
    We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated with electron pressure anisotropy likely present in the intracluster medium (ICM). The ICM is an astrophysical example of a weakly collisional plasma where the Larmor frequencies of charged particles greatly exceed their collision frequencies. This permits formation of pressure anisotropies, driven by evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ polarization arises in the process of Compton scattering of the cosmic microwave background (CMB) photons off the thermal ICM electrons due to the difference in the characteristic thermal velocities of the electrons along two mutually orthogonal directions in the sky plane. The signal scales linearly with the optical depth of the region containing large-scale correlated anisotropy, and with the degree of anisotropy itself. It has the same spectral dependence as the polarization induced by cluster motion with respect to the CMB frame (kinematic SZ effect polarization), but can be distinguished by its spatial pattern. { For the illustrative case of a galaxy cluster with a cold front, where electron transport is mediated by Coulomb collisions, we estimate the CMB polarization degree at the level of 10βˆ’8^{-8} (∼10\sim 10 nK). An increase of the effective electron collisionality due to plasma instabilities will reduce the effect. Such polarization, therefore, may be an independent probe of the electron collisionality in the ICM, which is one of the key properties of a high-Ξ²\beta weakly collisional plasma from the point of view of both astrophysics and plasma theory.Comment: 13 pages, 5 figures, accepted for publication in MNRA

    On integration of the Kowalevski gyrostat and the Clebsch problems

    Full text link
    For the Kowalevski gyrostat change of variables similar to that of the Kowalevski top is done. We establish one to one correspondence between the Kowalevski gyrostat and the Clebsch system and demonstrate that Kowalevski variables for the gyrostat practically coincide with elliptic coordinates on sphere for the Clebsch case. Equivalence of considered integrable systems allows to construct two Lax matrices for the gyrostat using known rational and elliptic Lax matrices for the Clebsch model. Associated with these matrices solutions of the Clebsch system and, therefore, of the Kowalevski gyrostat problem are discussed. The Kotter solution of the Clebsch system in modern notation is presented in detail.Comment: LaTeX, 24 page

    Intelligent OFDM telecommunication system. Part 3. Anti-eavesdropping and anti-jamming properties of system, based on many-parameter wavelet and Golay transforms

    Get PDF
    In this paper, we aim to investigate the superiority and practicability of many-parameter Fourier transforms (MPFT) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication system (Intelligent-OFDM-TCS), based on MPFT. New system uses inverse MPFT for modulation at the transmitter and direct MPFT for demodulation at the receiver. The purpose of employing the MPFTs is to improve the PHY-LS of wireless transmissions against to the wide-band anti-jamming communication. Each MPFT depends on finite set of independent parameters (angles), which could be changed independently one from another. When parameters are changed, multi-parametric transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. We implement the following performances as bit error rate (BER), symbol error rate (SER), the Shannon-Wyner secrecy capacity (SWSC) for novel Intelligent-MPWT-OFDM-TCS. Previous research has shown that the conventional OFDM TCS based on discrete Fourier transform (DFT) has unsatisfactory characteristics in BER, SWSC and in anti-eavesdropping communications. We study Intelligent-MPWT-OFDM-TCS to find out optimal values of angle parameters of MPFT optimized BER, SWSC, anti-eavesdropping effects. Simulation results show that the proposed Intelligent OFDM-TCS have better performances than the conventional OFDM system based on DFT against eavesdropping. Β© 2019 IOP Publishing Ltd. All rights reserved

    Many factor mimo-filters

    Get PDF
    Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚ΡΡ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… (Π±ΠΈ-, Ρ‚Ρ€ΠΈ- ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…-Π»Π°Ρ‚Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ…) MIMO-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ² для сСрых, Ρ†Π²Π΅Ρ‚Π½Ρ‹Ρ… ΠΈ Π³ΠΈΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. ΠžΠ±Ρ‹Ρ‡Π½Ρ‹Π΅ Π±ΠΈΠ»Π°Ρ‚Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Ρ‹ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ взвСшСнноС усрСднСниС сосСдних пиксСлСй. ВСса Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π΄Π²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹: ΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΈ Ρ€Π°Π΄ΠΈΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ. ΠŸΠ΅Ρ€Π²Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ гСомСтричСскоС расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ пиксСлСм маски ΠΈ Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ сосСдями. Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ радиомСтричСскоС расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ пиксСлСм маски ΠΈ Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ сосСдями. Π’ этом классичСском Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ΅ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ пиксСль маски ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ. Если ΠΎΠ½ искаТСн, Ρ‚ΠΎ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ искаТСнным. Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ опрСдСляСт ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ: Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ пиксСль замСняСтся Π΅Π³ΠΎ любой сглаТСнной вСрсиСй, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π½Π° основС сосСдних пиксСлСй. Вторая модификация ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎ-Π·Π½Π°Ρ‡Π½Ρ‹Π΅ вСса. Они Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹: ΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ, Ρ€Π°Π΄ΠΈΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ, ΠΌΠ΅ΠΆΠΊΠ°Π½Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈ Ρ€Π°Π΄ΠΈΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΌΠ΅ΠΆΠΊΠ°Π½Π°Π»ΡŒΠ½ΡƒΡŽ. Π§Π΅Ρ‚Π²Π΅Ρ€Ρ‚Ρ‹ΠΉ вСс ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ радиомСтричСскоС расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ пиксСлСм ΠΈ ΠΌΠ΅ΠΆΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ сосСдними пиксСлями

    Suppression of local heat flux in a turbulent magnetized intracluster medium

    Full text link
    X-ray observations of hot gas in galaxy clusters often show steeper temperature gradients across cold fronts -- contact discontinuities, driven by the differential gas motions. These sharp (a few kpc wide) surface brightness/temperature discontinuities would be quickly smeared out by the electron thermal conduction in unmagnetized plasma, suggesting significant suppression of the heat flow across the discontinuities. In fact, the character of the gas flow near cold fronts is favorable for suppression of conduction by aligning magnetic field lines along the discontinuities. We argue that a similar mechanism is operating in the bulk of the gas. Generic 3D random isotropic and incompressible motions increase the temperature gradients (in some places) and at the same time suppress the local conduction by aligning the magnetic field lines perpendicular to the local temperature gradient. We show that the suppression of the effective conductivity in the bulk of the gas can be linked to the increase of the frozen magnetic field energy density. On average the rate of decay of the temperature fluctuations d⟨δT2⟩/dt\mathrm{d}\langle \delta T^2 \rangle /\mathrm{d}t decreases as ⟨B2βŸ©βˆ’1/5\langle B^2 \rangle ^{-1/5}.Comment: 13 pages, 10 figures, published in MNRA

    FrΓ©chet mimo-filters

    Get PDF
    МСдианная Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΡ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π° ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ скалярных ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² качСствС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ, ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‰ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΏΠ°Π΄Ρ‹ яркости. Главная идСя ΠΌΠ΅Π΄ΠΈΠ°Π½Π½ΠΎΠΉ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ пиксСль ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ маски замСняСтся ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ всСх пиксСлСй, содСрТащихся Π² маскС. Π’ этой Ρ€Π°Π±ΠΎΡ‚Π΅ идСя Ρ€Π°ΡΡˆΠΈΡ€ΡΠ΅Ρ‚ΡΡ Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ-Π·Π½Π°Ρ‡Π½Ρ‹Π΅ изобраТСния. Π Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ основываСтся Π½Π° Ρ‚ΠΎΠΌ Ρ„Π°ΠΊΡ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Π΄ΠΈΠ°Π½Π° являСтся Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, которая ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ сумму расстояний ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π΅ΠΉ ΠΈ всСми скалярными пиксСлями Π²Π½ΡƒΡ‚Ρ€ΠΈ маски. Π’ΠΎΡ‡ΠΊΠΎΠΉ Π€Ρ€Π΅ΡˆΠ΅ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ мноТСства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ-Π·Π½Π°Ρ‡Π½Ρ‹Ρ… пиксСлСй Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ мСтричСском пространствС (с Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠ΅Ρ‚Ρ€ΠΈΠΊΠΎΠΉ) являСтся Ρ‚Π°ΠΊΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, сумма расстояний Π΄ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΡ‚ всСх Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… пиксСлСй (находящихся Π²Π½ΡƒΡ‚Ρ€ΠΈ маски) ΠΈΠΌΠ΅Π΅Ρ‚ минимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ понятиС Ρ‚ΠΎΡ‡ΠΊΠΈ Π€Ρ€Π΅ΡˆΠ΅ Ρ€Π°ΡΡˆΠΈΡ€ΡΠ΅Ρ‚ΡΡ Π΄ΠΎ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ Π€Ρ€Π΅ΡˆΠ΅, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ агрСгация расстояний, Π° Π½Π΅ ΠΈΡ… сумма. Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΡ€ΠΈ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π½Π΅ классичСскиС расстояния, Π° ΠΈΡ… Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ обобщСния. ΠžΠ±ΠΎΠ±Ρ‰Π΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ Π€Ρ€Π΅ΡˆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для построСния Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Π΄ΠΈΠ°Π½Π½Ρ‹Ρ… MIMO-Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²
    • …
    corecore