2,382 research outputs found
Theory of Quark-Gluon Plasma and Phase Transition
Nonperturbative picture of strong interacting quark-gluon plasma is given
based on the systematic Field Correlator Method. Equation of state, phase
transition in density-temperature plane is derived and compared to lattice data
as well as subsequent thermodynamical quantities of QGP.Comment: 6 pages,5 figures; talk given at "13th Lomonosov Conference on
Elementary Particle Physics", Moscow, August 23 -- 29, 2007; new reference
adde
Self-inhibiting thermal conduction in high-beta, whistler-unstable plasma
A heat flux in a high- plasma with low collisionality triggers the
whistler instability. Quasilinear theory predicts saturation of the instability
in a marginal state characterized by a heat flux that is fully controlled by
electron scattering off magnetic perturbations. This marginal heat flux does
not depend on the temperature gradient and scales as . We confirm this
theoretical prediction by performing numerical particle-in-cell simulations of
the instability. We further calculate the saturation level of magnetic
perturbations and the electron scattering rate as functions of and the
temperature gradient to identify the saturation mechanism as quasilinear.
Suppression of the heat flux is caused by oblique whistlers with
magnetic-energy density distributed over a wide range of propagation angles.
This result can be applied to high- astrophysical plasmas, such as the
intracluster medium, where thermal conduction at sharp temperature gradients
along magnetic-field lines can be significantly suppressed. We provide a
convenient expression for the amount of suppression of the heat flux relative
to the classical Spitzer value as a function of the temperature gradient and
. For a turbulent plasma, the additional independent suppression by the
mirror instability is capable of producing large total suppression factors
(several tens in galaxy clusters) in regions with strong temperature gradients.Comment: accepted to JP
Polarization of Sunyaev-Zeldovich signal due to electron pressure anisotropy in galaxy clusters
We describe polarization of the Sunyaev-Zel'dovich (SZ) effect associated
with electron pressure anisotropy likely present in the intracluster medium
(ICM). The ICM is an astrophysical example of a weakly collisional plasma where
the Larmor frequencies of charged particles greatly exceed their collision
frequencies. This permits formation of pressure anisotropies, driven by
evolving magnetic fields via adiabatic invariance, or by heat fluxes. SZ
polarization arises in the process of Compton scattering of the cosmic
microwave background (CMB) photons off the thermal ICM electrons due to the
difference in the characteristic thermal velocities of the electrons along two
mutually orthogonal directions in the sky plane. The signal scales linearly
with the optical depth of the region containing large-scale correlated
anisotropy, and with the degree of anisotropy itself. It has the same spectral
dependence as the polarization induced by cluster motion with respect to the
CMB frame (kinematic SZ effect polarization), but can be distinguished by its
spatial pattern. { For the illustrative case of a galaxy cluster with a cold
front, where electron transport is mediated by Coulomb collisions, we estimate
the CMB polarization degree at the level of 10 ( nK). An
increase of the effective electron collisionality due to plasma instabilities
will reduce the effect. Such polarization, therefore, may be an independent
probe of the electron collisionality in the ICM, which is one of the key
properties of a high- weakly collisional plasma from the point of view
of both astrophysics and plasma theory.Comment: 13 pages, 5 figures, accepted for publication in MNRA
On integration of the Kowalevski gyrostat and the Clebsch problems
For the Kowalevski gyrostat change of variables similar to that of the
Kowalevski top is done. We establish one to one correspondence between the
Kowalevski gyrostat and the Clebsch system and demonstrate that Kowalevski
variables for the gyrostat practically coincide with elliptic coordinates on
sphere for the Clebsch case. Equivalence of considered integrable systems
allows to construct two Lax matrices for the gyrostat using known rational and
elliptic Lax matrices for the Clebsch model. Associated with these matrices
solutions of the Clebsch system and, therefore, of the Kowalevski gyrostat
problem are discussed. The Kotter solution of the Clebsch system in modern
notation is presented in detail.Comment: LaTeX, 24 page
Intelligent OFDM telecommunication system. Part 3. Anti-eavesdropping and anti-jamming properties of system, based on many-parameter wavelet and Golay transforms
In this paper, we aim to investigate the superiority and practicability of many-parameter Fourier transforms (MPFT) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication system (Intelligent-OFDM-TCS), based on MPFT. New system uses inverse MPFT for modulation at the transmitter and direct MPFT for demodulation at the receiver. The purpose of employing the MPFTs is to improve the PHY-LS of wireless transmissions against to the wide-band anti-jamming communication. Each MPFT depends on finite set of independent parameters (angles), which could be changed independently one from another. When parameters are changed, multi-parametric transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. We implement the following performances as bit error rate (BER), symbol error rate (SER), the Shannon-Wyner secrecy capacity (SWSC) for novel Intelligent-MPWT-OFDM-TCS. Previous research has shown that the conventional OFDM TCS based on discrete Fourier transform (DFT) has unsatisfactory characteristics in BER, SWSC and in anti-eavesdropping communications. We study Intelligent-MPWT-OFDM-TCS to find out optimal values of angle parameters of MPFT optimized BER, SWSC, anti-eavesdropping effects. Simulation results show that the proposed Intelligent OFDM-TCS have better performances than the conventional OFDM system based on DFT against eavesdropping. Β© 2019 IOP Publishing Ltd. All rights reserved
Many factor mimo-filters
ΠΡΡΠ»Π΅Π΄ΡΠ΅ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΌΠ½ΠΎΠ³ΠΎΡΠ°ΠΊΡΠΎΡΠ½ΡΡ
(Π±ΠΈ-, ΡΡΠΈ- ΠΈ ΡΠ΅ΡΡΡΠ΅Ρ
-Π»Π°ΡΠ΅ΡΠ°Π»ΡΠ½ΡΡ
) MIMO-ΡΠΈΠ»ΡΡΡΠΎΠ² Π΄Π»Ρ ΡΠ΅ΡΡΡ
, ΡΠ²Π΅ΡΠ½ΡΡ
ΠΈ Π³ΠΈΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΠ±ΡΡΠ½ΡΠ΅ Π±ΠΈΠ»Π°ΡΠ΅ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΠ»ΡΡΡΡ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ Π²Π·Π²Π΅ΡΠ΅Π½Π½ΠΎΠ΅ ΡΡΡΠ΅Π΄Π½Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΡ
ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ. ΠΠ΅ΡΠ° Π²ΠΊΠ»ΡΡΠ°ΡΡ Π΄Π²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ: ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ ΠΈ ΡΠ°Π΄ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΡΡ. ΠΠ΅ΡΠ²Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° ΡΡΠΈΡΡΠ²Π°Π΅Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΌ ΠΌΠ°ΡΠΊΠΈ ΠΈ Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΡΠ΅Π΄ΡΠΌΠΈ. ΠΡΠΎΡΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΡΡΠΈΡΡΠ²Π°Π΅Ρ ΡΠ°Π΄ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΌ ΠΌΠ°ΡΠΊΠΈ ΠΈ Π΅Π³ΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΡΠ΅Π΄ΡΠΌΠΈ. Π ΡΡΠΎΠΌ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ΅ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΈΠΊΡΠ΅Π»Ρ ΠΌΠ°ΡΠΊΠΈ ΠΈΠ³ΡΠ°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΡΠΎΠ»Ρ Π² ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ. ΠΡΠ»ΠΈ ΠΎΠ½ ΠΈΡΠΊΠ°ΠΆΠ΅Π½, ΡΠΎ ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΠΈΡΠΊΠ°ΠΆΠ΅Π½Π½ΡΠΌ. ΠΡΠΎΡ ΡΠ°ΠΊΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΏΠ΅ΡΠ²ΡΡ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ: ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΈΠΊΡΠ΅Π»Ρ Π·Π°ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π΅Π³ΠΎ Π»ΡΠ±ΠΎΠΉ ΡΠ³Π»Π°ΠΆΠ΅Π½Π½ΠΎΠΉ Π²Π΅ΡΡΠΈΠ΅ΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΎΡΠ΅Π΄Π½ΠΈΡ
ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ. ΠΡΠΎΡΠ°Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΠΌΠ°ΡΡΠΈΡΠ½ΠΎ-Π·Π½Π°ΡΠ½ΡΠ΅ Π²Π΅ΡΠ°. ΠΠ½ΠΈ Π²ΠΊΠ»ΡΡΠ°ΡΡ ΡΠ΅ΡΡΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ: ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΡΡ, ΡΠ°Π΄ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΡΡ, ΠΌΠ΅ΠΆΠΊΠ°Π½Π°Π»ΡΠ½ΡΡ ΠΈ ΡΠ°Π΄ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΡΡ ΠΌΠ΅ΠΆΠΊΠ°Π½Π°Π»ΡΠ½ΡΡ. Π§Π΅ΡΠ²Π΅ΡΡΡΠΉ Π²Π΅Ρ ΡΡΠΈΡΡΠ²Π°Π΅Ρ ΡΠ°Π΄ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΌ ΠΈ ΠΌΠ΅ΠΆΠΊΠ°Π½Π°Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΡΠ΅Π΄Π½ΠΈΠΌΠΈ ΠΏΠΈΠΊΡΠ΅Π»ΡΠΌΠΈ
Suppression of local heat flux in a turbulent magnetized intracluster medium
X-ray observations of hot gas in galaxy clusters often show steeper
temperature gradients across cold fronts -- contact discontinuities, driven by
the differential gas motions. These sharp (a few kpc wide) surface
brightness/temperature discontinuities would be quickly smeared out by the
electron thermal conduction in unmagnetized plasma, suggesting significant
suppression of the heat flow across the discontinuities. In fact, the character
of the gas flow near cold fronts is favorable for suppression of conduction by
aligning magnetic field lines along the discontinuities. We argue that a
similar mechanism is operating in the bulk of the gas. Generic 3D random
isotropic and incompressible motions increase the temperature gradients (in
some places) and at the same time suppress the local conduction by aligning the
magnetic field lines perpendicular to the local temperature gradient. We show
that the suppression of the effective conductivity in the bulk of the gas can
be linked to the increase of the frozen magnetic field energy density. On
average the rate of decay of the temperature fluctuations decreases as .Comment: 13 pages, 10 figures, published in MNRA
FrΓ©chet mimo-filters
ΠΠ΅Π΄ΠΈΠ°Π½Π½Π°Ρ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΡ ΠΏΠΎΠ»ΡΡΠΈΠ»Π° ΡΠΈΡΠΎΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠΊΠ°Π»ΡΡΠ½ΡΡ
ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ, ΡΠΎΡ
ΡΠ°Π½ΡΡΡΠΈΡ
ΠΏΠ΅ΡΠ΅ΠΏΠ°Π΄Ρ ΡΡΠΊΠΎΡΡΠΈ. ΠΠ»Π°Π²Π½Π°Ρ ΠΈΠ΄Π΅Ρ ΠΌΠ΅Π΄ΠΈΠ°Π½Π½ΠΎΠΉ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΠΈΠΊΡΠ΅Π»Ρ ΡΠΊΠ°Π½ΠΈΡΡΡΡΠ΅ΠΉ ΠΌΠ°ΡΠΊΠΈ Π·Π°ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ Π²ΡΠ΅Ρ
ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΡ Π² ΠΌΠ°ΡΠΊΠ΅. Π ΡΡΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΠ΄Π΅Ρ ΡΠ°ΡΡΠΈΡΡΠ΅ΡΡΡ Π½Π° Π²Π΅ΠΊΡΠΎΡΠ½ΠΎ-Π·Π½Π°ΡΠ½ΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π Π°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠΎΠΌ ΡΠ°ΠΊΡΠ΅, ΡΡΠΎ ΠΌΠ΅Π΄ΠΈΠ°Π½Π° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΡΠΊΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡΡΠ΅Ρ ΡΡΠΌΠΌΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π½Π΅ΠΉ ΠΈ Π²ΡΠ΅ΠΌΠΈ ΡΠΊΠ°Π»ΡΡΠ½ΡΠΌΠΈ ΠΏΠΈΠΊΡΠ΅Π»ΡΠΌΠΈ Π²Π½ΡΡΡΠΈ ΠΌΠ°ΡΠΊΠΈ. Π’ΠΎΡΠΊΠΎΠΉ Π€ΡΠ΅ΡΠ΅ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π²Π΅ΠΊΡΠΎΡΠ½ΠΎ-Π·Π½Π°ΡΠ½ΡΡ
ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ Π² Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ (Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΡΠΈΠΊΠΎΠΉ) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΎΠΉ Π²Π΅ΠΊΡΠΎΡ, ΡΡΠΌΠΌΠ° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΉ Π΄ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΡ Π²ΡΠ΅Ρ
Π²Π΅ΠΊΡΠΎΡΠ½ΡΡ
ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ (Π½Π°Ρ
ΠΎΠ΄ΡΡΠΈΡ
ΡΡ Π²Π½ΡΡΡΠΈ ΠΌΠ°ΡΠΊΠΈ) ΠΈΠΌΠ΅Π΅Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΡΠΎΡΠΊΠΈ Π€ΡΠ΅ΡΠ΅ ΡΠ°ΡΡΠΈΡΡΠ΅ΡΡΡ Π΄ΠΎ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ Π€ΡΠ΅ΡΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π°Π³ΡΠ΅Π³Π°ΡΠΈΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΉ, Π° Π½Π΅ ΠΈΡ
ΡΡΠΌΠΌΠ°. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, ΠΏΡΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π½Π΅ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ, Π° ΠΈΡ
Π°Π³ΡΠ΅Π³Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ. ΠΠ±ΠΎΠ±ΡΠ΅Π½Π½ΡΠ΅ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ Π€ΡΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
ΠΌΠ΅Π΄ΠΈΠ°Π½Π½ΡΡ
MIMO-ΡΠΈΠ»ΡΡΡΠΎΠ²
Quantum tops as examples of commuting differential operators
We study the quantum analogs of tops on Lie algebras and
represented by differential operators.Comment: 24 p
- β¦