71 research outputs found

    Antioxidant activity and hepatoprotective effect of Cichorium intybus (Kasni) seed extract against carbon tetrachloride-induced liver toxicity in rats

    Get PDF
    Purpose: To assess the antioxidant and hepatoprotective activity of the aqueous-methanol extract of Cichorium intybus seeds (C. intybus) against carbon tetrachloride (CCl4)-induced liver toxicity in albino Wistar rats.Method: The seed extract of C. intybus was prepared in aqueous methanol (20:80) via Soxhlet solvent extraction process. CCl4 (0.8 mL/kg) was administered to induce hepatic damage in Wistar rats. The seed extract (100, 250 and 500 mg/kg doses) and a 25 mg/kg dose of silymarin (as standard drug) were administered orally to separate groups of albino Wistar rats for 14 days. Blood samples from the rats were analyzed for biochemical markers for hepatic injury. The tissue samples of the rats were subjected to histopathological studies as well as analyzed for liver antioxidants.Results: The results for biochemical markers revealed that the rats treated with the extract (500 mg/kg dose) showed a maximum elevation of catalase (48.90 μmole of H2O2 consumed/min/mg protein), glutothione peroxidase (22.1 mg GSH consumed/min/mg protein), superoxide dismutase (14.2 units/min/mg protein), and a reduction in glutathione (18.1 μmole of GSH/mg protein). Serum biochemical parameters including serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphate (ALKP), and direct bilirubin were significantly (p < 0.01) increased in the treated groups. Oral administration of different doses of C. intybus seed extract significantly (p < 0.01) protected the hepatic cells from impairment. The biochemical markers and hematological parameters were also normal in extract-treated rats in contrast to the standard (silymarin) and control groups.Conclusion: The results show that C. intybus plant is potential a good natural source of natural hepatoprotective and antioxidants agents.Keywords: Cichorium intybus, Antioxidant, Hepatoprotective Biomarkers, Silymarin, Hematological parameter

    Left Ventricular Systolic Dysfunction in Patients of Obstructive Sleep Apnea Syndrome

    Get PDF
    Objective: To determine the left ventricular systolic dysfunction and the association of various factors with this dysfunction in patients with obstructive sleep apnea syndrome. Study Design: Cross-sectional study. Place and Duration of Study: Pak Emirates Military Hospital, Rawalpindi Pakistan, from Dec 2020 to May 2021. Methodology: We included the patients diagnosed with sleep apnea syndrome by a consultant pulmonologist based on a sleep study. Patients were labelled as having left ventricular systolic dysfunction if the ejection fraction was less than 40% on echocardiography. Results: Eighty patients diagnosed with sleep apnea syndrome were included in the study. The mean age of the study participants was 48.551±9.971 years. Out of 80 patients, 19(23.75%) had left ventricular systolic dysfunction on echocardiography, while 61(76.25%) had no evidence of left ventricular systolic dysfunction. With the application of relevant statistical tests, we found that patients with high body mass index and the presence of comorbid illnesses had a statistically significant relationship (p-value<0.05) with the presence of left ventricular systolic dysfunction among patients with sleep apnea syndrome. Conclusion: Considerable number of patients suffering from obstructive sleep apnea syndrome showed the presence of left ventricular systolic dysfunction on echocardiography. High Body mass index and comorbid illnesses emerged as risk factors for left ventricular systolic dysfunction in our study population

    Phytochemical and Biological Studies of Agave attenuata

    Get PDF
    The present study was conducted to examine various biological activities of a methanol extract of Agave attenuata leaves. GC-MS analysis of the n-hexane fraction from the extract revealed the presence of 31 compounds, with mono-2-ethylhexyl phthalate (11.37%), 1,2-benzenedicarboxylic acid (6.33%), n-docosane (6.30%) and eicosane (6.02%) as the major components. The leaves contained appreciable levels of total phenolic contents (10.541–39.35 GAE, mg/100 g) and total flavonoid contents (43.35–304.8 CE, mg/100 g). The extract and some of its fractions showed moderate antimicrobial effects. Leaves extract and fractions also exhibited a good antioxidant potential when measured by DPPH radical scavenging activity and inhibition of lipid peroxidation assays. The hemolytic effect of the plant was found to be in a range of 1.01%–2.64%. From the present study it is concluded that this plant could be used as a source of natural antioxidants and functional food nutraceutical applications

    Facile synthesis of N- (4-bromophenyl)-1- (3-bromothiophen-2-yl)methanimine derivatives via Suzuki cross-coupling reaction: their characterization and DFT studies

    Get PDF
    A variety of imine derivatives have been synthesized via Suzuki cross coupling of N-(4-bromophenyl)-1-(3-bromothiophen-2-yl)methanimine with various arylboronic acids in moderate to good yields (58–72%). A wide range of electron donating and withdrawing functional groups were well tolerated in reaction conditions. To explore the structural properties, Density functional theory (DFT) investigations on all synthesized molecules (3a–3i) were performed. Conceptual DFT reactivity descriptors and molecular electrostatic potential analyses were performed by using B3LYP/6-31G(d,p) method to explore the reactivity and reacting sites of all derivatives (3a–3i)

    Berberis Plants—Drifting from Farm to Food Applications, Phytotherapy, and Phytopharmacology

    Get PDF
    The genus Berberis includes about 500 different species and commonly grown in Europe, the United States, South Asia, and some northern areas of Iran and Pakistan. Leaves and fruits can be prepared as food flavorings, juices, and teas. Phytochemical analysis of these species has reported alkaloids, tannins, phenolic compounds and oleanolic acid, among others. Moreover, p-cymene, limonene and ocimene as major compounds in essential oils were found by gas chromatography. Berberis is an important group of the plants having enormous potential in the food and pharmaceutical industry, since they possess several properties, including antioxidant, antimicrobial, anticancer activities. Here we would like to review the biological properties of the phytoconstituents of this genus. We emphasize the cultivation control in order to obtain the main bioactive compounds, the antioxidant and antimicrobial properties in order to apply them for food preservation and for treating several diseases, such as cancer, diabetes or Alzheimer. However, further study is needed to confirm the biological efficacy as well as, the toxicity

    Transition metal doped CeO2 for photocatalytic removal of 2-chlorophenol in the exposure of indoor white light and antifungal activity

    Get PDF
    Besides natural sunlight and expensive artificial lights, economical indoor white light can play a significant role in activating a catalyst for photocatalytic removal of organic toxins from contaminated water. In the current effort, CeO2 has been modified with Ni, Cu, and Fe through doping methodology to study the removal of 2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The absence of additional diffractions due to the dopants and few changes such as reduction in peaks’ height, minor peak shift at 2θ (28.525°) and peaks’ broadening in XRD patterns of modified CeO2 verifies the successful doping of CeO2. The solid-state absorption spectra revealed higher absorbance of Cu-doped CeO2 whereas a lower absorption response was observed for Ni-doped CeO2. An interesting observation regarding the lowering of indirect bandgap energy of Fe-doped CeO2 (∼2.7 eV) and an increase in Ni-doped CeO2 (∼3.0 eV) in comparison to pristine CeO2 (∼2.9 eV) was noticed. The process of e-– h+ recombination in the synthesized photocatalysts was also investigated through photoluminescence spectroscopy. The photocatalytic studies revealed the greater photocatalytic activity of Fe-doped CeO2 with a higher rate (∼3.9 × 10−3 min-1) among all other materials. Moreover, kinetic studies also revealed the validation of the Langmuir-Hinshelwood kinetic model (R2 = 0.9839) while removing 2-CP in the exposure of indoor light with a Fe-doped CeO2 photocatalyst. The XPS analysis revealed the existence of Fe3+, Cu2+ and Ni2+ core levels in doped CeO2. Using the agar well-diffusion method, the antifungal activity was assessed against the fungus M. fructicola and F. oxysporum. Compared to CeO2, Ni-doped CeO2, and Cu-doped CeO2 nanoparticles, the Fe-doped CeO2 nanoparticles have outstanding antifungal properties

    Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review

    Get PDF
    Deterioration of environmental quality and equilibrium by rampant industrial expansion, accelerated urbanization and unchecked population growth has become a high-priority concern. The release of an alarming number of toxic polluting agents such as volatile organic compounds, dyes, heavy metals, pharmaceuticals, pesticides, industrial wastes, and personal care products due to natural or anthropogenic activities pose direct adverse effects on human health and living entities. This issue is inescapably increased because of the lack of efficient technologies for the proper disposal, management, and recycling of waste. It is of paramount importance to track alternative solutions to address these pollution problems for an eco-sustainable environment. Conventional remediation techniques are either inefficient, cumbersome or restricted due to certain techno-economic limitations. Environmental compatibility and high pollutant-removal efficacy make surfactants valuable for removal of organic pollutants and toxic heavy metal ions from different mediums. In this review, we present recent and up-to-date information on micelles/surfactants-assisted abatement of a vast number of toxic agents of emerging concern from water/wastewater including volatile organic compounds, personal care products, pharmaceutically active residues, toxic metals, dye pollutants, pesticides, and petroleum hydrocarbons. Based on the literature survey, it can be concluded that micelles-assisted water and soil treatment technology can have a better future on large-scale decontamination of wastewater. Though bio-surfactants are environmentally friendlier matrices and have successfully been employed for environmental decontamination; their large-scale applicability is challenging owing to high costs. Additional research efforts on the development and employment of novel bio-surfactants might render wastewater treatment technology greener, smarter and economical

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
    corecore