24 research outputs found
Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility
Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (<1 arcsecond). To accommodate this somewhat demanding requirement, NASA Marshall Space Flight Center (MSFC) has procured a custom, windowless low-energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs
Opto-Mechanical Analyses for Performance Optimization of Lightweight Grazing-Incidence Mirrors
New technology in grazing-incidence mirror fabrication and assembly is necessary to achieve sub-arcsecond optics for large-area x-ray telescopes. In order to define specifications, an understanding of performance sensitivity to design parameters is crucial. MSFC is undertaking a systematic study to specify a mounting approach, mirror substrate, and testing method. Because the lightweight mirrors are typically flimsy, they are susceptible to significant distortion due to mounting and gravitational forces. Material properties of the mirror substrate along with its thickness and dimensions significantly affect the distortions caused by mounting and gravity. A parametric study of these properties and their relationship to mounting and testing schemes will indicate specifications for the design of the next generation of lightweight grazing-incidence mirrors. Initial results will be reported
First Images from HERO: A Hard-X-Ray Focusing Telescope
We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided
On the Development of the Marshall Grazing Incidence X-ray Spectrograph (MaGIXS) Mirrors
The Marshall Grazing Incidence X-ray Spectrograph (MaGIXS) is a sounding rocket experiment that will obtain spatially resolved soft X-ray spectra of the solar corona from 0.5 - 2 keV. The optical system comprises a Wolter-I telescope mirror, a slit spectrograph, and a CCD camera. The spectrograph has a finite conjugate paraboloid pair, which re-images the slit, and a varied line-space planar reflection grating. Both the Wolter-I mirror and paraboloid pair are being fabricated at the NASA Marshall Space Flight Center (MSFC), using nickel replication. The MaGIXS mirror mandrels have been diamond turned, polished, and have yielded a set of engineering mirrors. Unlike other grazing incidence instruments, such as FOXSI, ART-XC, and IXPE, the MaGIXS prescriptions have large departure from a cone. This property exacerbates challenges with conventional lap polishing techniques and interferometric metrology. Here we discuss the progression of the optical surfaces of the mandrels through lap polishing, X-ray data from the replicated shells obtained in the MSFC Stray Light Facility (SLF), and our transition to using the ZEEKO computer numerical controlled (CNC) polisher for figure correction
Kepler Data Release 4 Notes
The Data Analysis Working Group have released long and short cadence materials, including FFIs and Dropped Targets for the Public. The Kepler Science Office considers Data Release 4 to provide "browse quality" data. These notes have been prepared to give Kepler users of the Multimission Archive at STScl (MAST) a summary of how the data were collected and prepared, and how well the data processing pipeline is functioning on flight data. They will be updated for each release of data to the public archive and placed on MAST along with other Kepler documentation, at http://archive.stsci.edu/kepler/documents.html. Data release 3 is meant to give users the opportunity to examine the data for possibly interesting science and to involve the users in improving the pipeline for future data releases. To perform the latter service, users are encouraged to notice and document artifacts, either in the raw or processed data, and report them to the Science Office
The Imaging X-ray Polarimetry Explorer (IXPE): Technical Overview
The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding linear polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, including polarization maps of several x-ray-bright extended sources and phase-resolved polarimetry of many bright pulsating x-ray sources
The X-ray Polarization Probe mission concept
The X-ray Polarization Probe (XPP) is a second generation X-ray polarimeter
following up on the Imaging X-ray Polarimetry Explorer (IXPE). The XPP will
offer true broadband polarimetery over the wide 0.2-60 keV bandpass in addition
to imaging polarimetry from 2-8 keV. The extended energy bandpass and
improvements in sensitivity will enable the simultaneous measurement of the
polarization of several emission components. These measurements will give
qualitatively new information about how compact objects work, and will probe
fundamental physics, i.e. strong-field quantum electrodynamics and strong
gravity.Comment: submitted to Astrophysics Decadal Survey as a State of the Profession
white pape
Deterministic Polishing of Replicating Grazing-Incidence Mandrels
No abstract availabl
Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope
On September 21-22, 2013, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope, flew as a balloon payload from Ft. Sumner, N.M. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 hour flight. In this paper we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources, applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray-Light (SLF) Facility in Huntsville, AL, and using ray traces