328 research outputs found

    Competing anisotropy in the (TmxPr1-x)2Fe17 system

    Full text link
    The magnetization curves of magnetically aligned finely powdered samples of the (TmxPr1-x)2Fe17 compounds have been measured at 4 K. The easy magnetization axis is oriented in the basal plane or along the hexagonal axis for the compounds with x = 0-0.3 and 0.7-1, respectively. This is because of the absence of magnetic ordering in the Tm and Pr subsystems in these ranges, respectively, and because of competing anisotropy of the subsystems. For the compositions with x = 0.4-0.6, both rare-earth subsystems are magnetically ordered and the easy magnetization axis is oriented between the basal plane and the hexagonal axis. The critical fields of FOMPs decrease quickly as the Pr or Tm content decreases in the ranges 0-0.3 and 0.7-1, respectively. The magnetization anisotropy also diminishes as the Tm content becomes smaller than x = 0.7. No influence of the intrinsic microdeformations on the magnetization of the compounds was detected. © 2018 The Authors, published by EDP Sciences

    Effect of solid solution treatment and nitrogenation on magnetic properties of Sm2+αFe17Nx powders

    Full text link
    The effect of solid solution treatment (SST) of Sm-Fe alloys and conditions of the nitrogenation on the structure and magnetic properties of the Sm2+αFe17Nx (α = 0 0.6) powders has been investigated. It is observed that the nitrided powders with the best hysteresis properties can be prepared from the Sm2.4Fe17 alloy after the SST at a temperature of 1050C (5 h) and heat treatment at 525C in a H2: N2 = 1: 1 gas mixture with a pressure of 2.5 atm. The additional ball milling of the powder enhances the coercivity to 6.4 kOe. © Published under licence by IOP Publishing Ltd.No.17-52-80072The work is supported by RFFI-BRICS project No.17-52-80072 and DST-BRICS under Proposal 258

    Escherichia coli MazF Leads to the Simultaneous Selective Synthesis of Both “Death Proteins” and “Survival Proteins”

    Get PDF
    The Escherichia coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. MazF is an endoribonuclease that leads to the inhibition of protein synthesis by cleaving mRNAs at ACA sequences. Here, using 2D-gels, we show that in E. coli, although MazF induction leads to the inhibition of the synthesis of most proteins, the synthesis of an exclusive group of proteins, mostly smaller than about 20 kDa, is still permitted. We identified some of those small proteins by mass spectrometry. By deleting the genes encoding those proteins from the E. coli chromosome, we showed that they were required for the death of most of the cellular population. Under the same experimental conditions, which induce mazEF-mediated cell death, other such proteins were found to be required for the survival of a small sub-population of cells. Thus, MazF appears to be a regulator that induces downstream pathways leading to death of most of the population and the continued survival of a small sub-population, which will likely become the nucleus of a new population when growth conditions become less stressful

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    Magnetic properties of melt-spun ribbons (Sm1–xZrx)(Fe0.92Ti0.08)10 with ThMn12 structure and their hydrides

    Full text link
    The structure and magnetic hysteresis properties of the cast Sm1–xZrx(Fe0.92Ti0.08)10 (x = 0–0.3) alloys and melt-spun ribbons prepared from them were studied. In the cast alloy with x > 0.2, a considerable amount of the eutectic phase is found in the SEM micrographs. Analysis of the temperature dependences of the magnetic susceptibility and XRD patterns allows amorphous state in the as-spun ribbons with x > 0.2 to be determined. The specific magnetization measured in a field of 17 kOe and remanence decrease with increasing annealing temperature from 800 to 900 °C and weakly depend on Zr concentration. The maximal value of coercivity Нс = 4.7 kOe is obtained on the ribbons with х = 0.2 after annealing at 850°С for 10 min. After additional hydrogenation of the ribbons, both the coercivity and remanence increase by 54% and 7%, respectively. © 2019 Chinese Society of Rare Earth

    The relBE2Spn Toxin-Antitoxin System of Streptococcus pneumoniae: Role in Antibiotic Tolerance and Functional Conservation in Clinical Isolates

    Get PDF
    Type II (proteic) chromosomal toxin-antitoxin systems (TAS) are widespread in Bacteria and Archaea but their precise function is known only for a limited number of them. Out of the many TAS described, the relBE family is one of the most abundant, being present in the three first sequenced strains of Streptococcus pneumoniae (D39, TIGR4 and R6). To address the function of the pneumococcal relBE2Spn TAS in the bacterial physiology, we have compared the response of the R6-relBE2Spn wild type strain with that of an isogenic derivative, ΔrelB2Spn under different stress conditions such as carbon and amino acid starvation and antibiotic exposure. Differences on viability between the wild type and mutant strains were found only when treatment directly impaired protein synthesis. As a criterion for the permanence of this locus in a variety of clinical strains, we checked whether the relBE2Spn locus was conserved in around 100 pneumococcal strains, including clinical isolates and strains with known genomes. All strains, although having various types of polymorphisms at the vicinity of the TA region, contained a functional relBE2Spn locus and the type of its structure correlated with the multilocus sequence type. Functionality of this TAS was maintained even in cases where severe rearrangements around the relBE2Spn region were found. We conclude that even though the relBE2Spn TAS is not essential for pneumococcus, it may provide additional advantages to the bacteria for colonization and/or infection

    Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium

    Get PDF
    Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies

    Successful Inhibition of Tumor Development by Specific Class-3 Semaphorins Is Associated with Expression of Appropriate Semaphorin Receptors by Tumor Cells

    Get PDF
    The class-3 semaphorins (sema3s) include seven family members. Six of them bind to neuropilin-1 (np1) or neuropilin-2 (np2) receptors or to both, while the seventh, sema3E, binds to the plexin-D1 receptor. Sema3B and sema3F were previously characterized as tumor suppressors and as inhibitors of tumor angiogenesis. To determine if additional class-3 semaphorins such as sema3A, sema3D, sema3E and sema3G possess anti-angiogenic and anti-tumorigenic properties, we expressed the recombinant full length semaphorins in four different tumorigenic cell lines expressing different combinations of class-3 semaphorin receptors. We show for the first time that sema3A, sema3D, sema3E and sema3G can function as potent anti-tumorigenic agents. All the semaphorins we examined were also able to reduce the concentration of tumor associated blood vessels although the potencies of the anti-angiogenic effects varied depending on the tumor cell type. Surprisingly, there was little correlation between the ability to inhibit tumor angiogenesis and their anti-tumorigenic activity. None of the semaphorins inhibited the adhesion of the tumor cells to plastic or fibronectin nor did they modulate the proliferation of tumor cells cultured in cell culture dishes. However, various semaphorins were able to inhibit the formation of soft agar colonies from tumor cells expressing appropriate semaphorin receptors, although in this case too the inhibitory effect was not always correlated with the anti-tumorigenic effect. In contrast, the anti-tumorigenic effect of each of the semaphorins correlated very well with tumor cell expression of specific signal transducing receptors for particular semaphorins. This correlation was not broken even in cases in which the tumor cells expressed significant concentrations of endogenous semaphorins. Our results suggest that combinations of different class-3 semaphorins may be more effective than single semaphorins in cases in which tumor cells express more than one type of semaphorin receptors
    corecore