230 research outputs found

    Slow quench dynamics of periodically driven quantum gases

    Full text link
    We study the evolution of bosons in a periodically driven optical lattice during a slow change of the driving amplitude. Both the regime of high frequency and low frequency driving are investigated. In the low frequency regime, resonant absorption of energy is observed. In the high frequency regime, the dynamics is compared to a system with an effective Hamiltonian in which the atoms are `dressed' by the driving field. This `dressing' can dramatically change the amplitude and sign of the effective tunneling. A particular focus of this study is the investigation of the time-scales necessary for the evolving quantum state to follow almost adiabatically to the ground-state of the effective many body system.Comment: 10 pages, 8 figure

    Spin-charge separation in cold Fermi-gases: a real time analysis

    Full text link
    Using the adaptive time-dependent density-matrix renormalization group method for the 1D Hubbard model, the splitting of local perturbations into separate wave packets carrying charge and spin is observed in real-time. We show the robustness of this separation beyond the low-energy Luttinger liquid theory by studying the time-evolution of single particle excitations and density wave packets. A striking signature of spin-charge separation is found in 1D cold Fermi gases in a harmonic trap at the boundary between liquid and Mott-insulating phases. We give quantitative estimates for an experimental observation of spin-charge separation in an array of atomic wires

    Theory of light-enhanced phonon-mediated superconductivity

    Full text link
    We investigate the dynamics of a phonon-mediated superconductor driven out of equilibrium. The electronic hopping amplitude is ramped down in time, resulting in an increased electronic density of states. The dynamics of the coupled electron-phonon model is investigated by solving Migdal-Eliashberg equations for the double-time Keldysh Green's functions. The increase of the density of states near the Fermi level leads to an enhancement of superconductivity when the system thermalizes to the new state at the same temperature. We provide a time- and momentum-resolved view on this thermalization process, and show that it involves fast processes associated with single-particle scattering and much slower dynamics associated with the superconducting order parameter. The importance of electron-phonon coupling for the rapid enhancement and the efficient thermalization of superconductivity is demonstrated, and the results are compared to a BCS time-dependent mean-field approximation.Comment: 12 pages, 8 figure

    Spatial correlations of trapped 1d bosons in an optical lattice

    Full text link
    We investigate a quasi-one dimensional system of trapped cold bosonic atoms in an optical lattice by using the density matrix renormalization group to study the Bose-Hubbard model at T=0 for experimentally realistic numbers of lattice sites. It is shown that a properly rescaled one-particle density matrix characterizes superfluid versus insulating states just as in the homogeneous system. For typical parabolic traps we also confirm the widely used local density approach for describing correlations in the limit of weak interaction. Finally, we note that the superfluid to Mott-insulating transition is seen most directly in the half width of the interference peak

    One-dimensional density waves of ultracold bosons in an optical lattice

    Full text link
    We investigate the propagation of density-wave packets in a Bose-Hubbard model using the adaptive time-dependent density-matrix renormalization group method. We discuss the decay of the amplitude with time and the dependence of the velocity on density, interaction strength and the height of the perturbation in a numerically exact way, covering arbitrary interactions and amplitudes of the perturbation. In addition, we investigate the effect of self-steepening due to the amplitude dependence of the velocity and discuss the possibilities for an experimental detection of the moving wave packet in time of flight pictures. By comparing the sound velocity to theoretical predictions, we determine the limits of a Gross-Pitaevskii or Bogoliubov type description and the regime where repulsive one-dimensional Bose gases exhibit fermionic behaviour

    Spectrum of a magnetized strong-leg quantum spin ladder

    Full text link
    Inelastic neutron scattering is used to measure the spin excitation spectrum of the Heisenberg S=1/2S=1/2 ladder material (C7_7H10_10N)2_2CuBr4_4 in its entirety, both in the gapped spin-liquid and the magnetic field induced Tomonaga-Luttinger spin liquid regimes. A fundamental change of the spin dynamics is observed between these two regimes. DMRG calculations quantitatively reproduce and help understand the observed commensurate and incommensurate excitations. The results validate long-standing quantum field theoretical predictions, but also test the limits of that approach

    Nonlinear transport in the presence of a local dissipation

    Full text link
    We characterize the particle transport, particle loss, and nonequilibrium steady states in a dissipative one-dimensional lattice connected to reservoirs at both ends. The free-fermion reservoirs are fixed at different chemical potentials, giving rise to particle transport. The dissipation is due to a local particle loss acting on the center site. We compute the conserved current and loss current as functions of voltage in the nonlinear regime using a Keldysh description. The currents show step-like features which are affected differently by the local loss: The steps are either smoothened, nearly unaffected, or even enhanced, depending on the spatial symmetry of the single-particle eigenstate giving rise to the step. Additionally, we compute the particle density and momentum distributions in the chain. At a finite voltage, two Fermi momenta can occur, connected to different wavelengths of Friedel oscillations on either side of the lossy site. We find that the wavelengths are determined by the chemical potentials in the reservoirs rather than the average density in the lattice.Comment: 19 pages, 19 figure

    Variational ansatz for the superfluid Mott-insulator transition in optical lattices

    Full text link
    We develop a variational wave function for the ground state of a one-dimensional bosonic lattice gas. The variational theory is initally developed for the quantum rotor model and later on extended to the Bose-Hubbard model. This theory is compared with quasi-exact numerical results obtained by Density Matrix Renormalization Group (DMRG) studies and with results from other analytical approximations. Our approach accurately gives local properties for strong and weak interactions, and it also describes the crossover from the superfluid phase to the Mott-insulator phase.Comment: Entirely new and more precise variational metho

    Dipolar Bosons in a Planar Array of One-Dimensional Tubes

    Get PDF
    We investigate bosonic atoms or molecules interacting via dipolar interactions in a planar array of one-dimensional tubes. We consider the situation in which the dipoles are oriented perpendicular to the tubes by an external field. We find various quantum phases reaching from a “sliding Luttinger liquid” phase to a two-dimensional charge density wave ordered phase. Two different kinds of charge density wave order occur: a stripe phase in which the bosons in different tubes are aligned and a checkerboard phase. We further point out how to distinguish the occurring phases experimentally

    Theory of Laser-Controlled Competing Superconducting and Charge Orders

    Get PDF
    We investigate the nonequilibrium dynamics of competing coexisting superconducting (SC) and charge-density wave (CDW) orders in an attractive Hubbard model. A time-periodic laser field →A(t) lifts the SC-CDW degeneracy, since the CDW couples linearly to the field (→A), whereas SC couples in second order (→A2) due to gauge invariance. This leads to a striking resonance: When the photon energy is red detuned compared to the equilibrium single-particle energy gap, CDW is enhanced and SC is suppressed, while this behavior is reversed for blue detuning. Both orders oscillate with an emergent slow frequency, which is controlled by the small amplitude of a third induced order, namely η pairing, given by the commutator of the two primary orders. The induced η pairing is shown to control the enhancement and suppression of the dominant orders. Finally, we demonstrate that light-induced superconductivity is possible starting from a predominantly CDW initial state
    • …
    corecore