873 research outputs found

    Non-topological gravitating defects in five-dimensional anti-de Sitter space

    Get PDF
    A class of five-dimensional warped solutions is presented. The geometry is everywhere regular and tends to five-dimensional anti-de Sitter space for large absolute values of the bulk coordinate. The physical features of the solutions change depending on the value of an integer parameter. In particular, a set of solutions describes generalized gravitating kinks where the scalar field interpolates between two different minima of the potential. The other category of solutions describes instead gravitating defects where the scalar profile is always finite and reaches the same constant asymptote both for positive and negative values of the bulk coordinate. In this sense the profiles are non-topological. The physical features of the zero modes are discussed.Comment: 9 pages, 4 figure

    Braneworlds in six dimensions: new models with bulk scalars

    Get PDF
    Six dimensional bulk spacetimes with 3-- and 4--branes are constructed using certain non--conventional bulk scalars as sources. In particular, we investigate the consequences of having the phantom (negative kinetic energy) and the Brans--Dicke scalar in the bulk while obtaining such solutions. We find geometries with 4--branes with a compact on--brane dimension (hybrid compactification) which may be assumed to be small in order to realize a 3--brane world. On the other hand, we also construct, with similar sources, bulk spacetimes where a 3--brane is located at a conical singularity. Furthermore, we investigate the issue of localization of matter fields (scalar, fermion, graviton, vector) on these 3-- and 4--branes and conclude with comments on our six dimensional models.Comment: 24 pages, 1 figure, Replaced to match version published in Class. Quant. Gra

    Higher order finite difference schemes for the magnetic induction equations

    Get PDF
    We describe high order accurate and stable finite difference schemes for the initial-boundary value problem associated with the magnetic induction equations. These equations model the evolution of a magnetic field due to a given velocity field. The finite difference schemes are based on Summation by Parts (SBP) operators for spatial derivatives and a Simultaneous Approximation Term (SAT) technique for imposing boundary conditions. We present various numerical experiments that demonstrate both the stability as well as high order of accuracy of the schemes.Comment: 20 page

    Bulk scalar field in brane-worlds with induced gravity inspired by the L(R){\cal L}(R) term

    Full text link
    We obtain the effective field equations in a brane-world scenario within the framework of a DGP model where the action on the brane is an arbitrary function of the Ricci scalar, L(R){\cal L}(R), and the bulk action includes a scalar field in the matter Lagrangian. We obtain the Friedmann equations and acceleration conditions in the presence of the bulk scalar field for the RnR^n term in four-dimensional gravity.Comment: 9 pages, to appear in JCA

    Can degenerate bound states occur in one dimensional quantum mechanics?

    Full text link
    We point out that bound states, degenerate in energy but differing in parity, may form in one dimensional quantum systems even if the potential is non-singular in any finite domain. Such potentials are necessarily unbounded from below at infinity and occur in several different contexts, such as in the study of localised states in brane-world scenarios. We describe how to construct large classes of such potentials and give explicit analytic expressions for the degenerate bound states. Some of these bound states occur above the potential maximum while some are below. Various unusual features of the bound states are described and after highlighting those that are ansatz independent, we suggest that it might be possible to observe such parity-paired degenerate bound states in specific mesoscopic systems.Comment: 10 pages, 2 figures, to appear in Europhysics Letter

    Scalar kinks and fermion localisation in warped spacetimes

    Full text link
    Scalar kinks propagating along the bulk in warped spacetimes provide a thick brane realisation of the braneworld. We consider here, a class of such exact solutions of the full Einstein-scalar system with a sine-Gordon potential and a negative cosmological constant. In the background of the kink and the corresponding warped geometry, we discuss the issue of localisation of spin half fermions (with emphasis on massive ones) on the brane in the presence of different types of kink-fermion Yukawa couplings. We analyse the possibility of quasi-bound states for large values of the Yukawa coupling parameter γF\gamma_F (with ν\nu, the warp factor parameter kept fixed) using appropriate, recently developed, approximation methods. In particular, the spectrum of the low--lying states and their lifetimes are obtained, with the latter being exponentially enhanced for large νγF\nu \gamma_F. Our results indicate quantitatively, within this model, that it is possible to tune the nature of warping and the strength and form of the Yukawa interaction to obtain trapped massive fermion states on the brane, which, however, do have a finite (but very small) probability of escaping into the bulk.Comment: 22 pages, 4 figures, RevTex

    Non-Z2\mathbb{Z}_{2} symmetric braneworlds in scalar tensorial gravity

    Full text link
    We obtain, via the Gauss-Codazzi formalism, the expression of the effective Einstein-Brans-Dicke projected equations in a non-Z2\mathbb{Z}_{2} symmetric braneworld scenario which presents hybrid compactification. It is shown that the functional form of such equations resembles the one in the Einstein's case, except by the fact that they bring extra informations in the context of exotic compactifications.Comment: 12 pages, LATEX file, no figures. Accepted for publication in the European Physical Journal

    Particle creation in the presence of a warped extra dimension

    Full text link
    Particle creation in spacetimes with a warped extra dimension is studied. In particular, we investigate the dynamics of a conformally coupled, massless scalar field in a five dimensional warped geometry where the induced metric on the 3--branes is that of a spatially flat cosmological model. We look at situations where the scale of the extra dimension is assumed (i) to be time independent or (ii) to have specific functional forms for time dependence. The warp factor is chosen to be that of the Randall--Sundrum model. With particular choices for the functional form of the scale factor (and also the function characterising the time evolution of the extra dimension) we obtain the βk2{| \beta_k|}^2, the particle number and energy densities after solving (wherever possible, analytically but, otherwise, numerically) the conformal scalar field equations. The behaviour of these quantities for the massless and massive Kaluza--Klein modes are examined. Our results show the effect of a warped extra dimension on particle creation and illustrate how the nature of particle production on the brane depends on the nature of warping, type of cosmological evolution as well as the temporal evolution of the extra dimension.Comment: 21 pages, 10 figures, minor corrections, new references added, version to appear in JCA

    Reducing Constraints in a Higher Dimensional Extension of the Randall and Sundrum Model

    Get PDF
    In order to investigate the phenomenological implications of warped spaces in more than five dimensions, we consider a 4+1+δ4+1+\delta dimensional extension to the Randall and Sundrum model in which the space is warped with respect to a single direction by the presence of an anisotropic bulk cosmological constant. The Einstein equations are solved, giving rise to a range of possible spaces in which the δ\delta additional spaces are warped. Here we consider models in which the gauge fields are free to propagate into such spaces. After carrying out the Kaluza Klein (KK) decomposition of such fields it is found that the KK mass spectrum changes significantly depending on how the δ\delta additional dimensions are warped. We proceed to compute the lower bound on the KK mass scale from electroweak observables for models with a bulk SU(2)×U(1)SU(2)\times U(1) gauge symmetry and models with a bulk SU(2)R×SU(2)L×U(1)SU(2)_R\times SU(2)_L\times U(1) gauge symmetry. It is found that in both cases the most favourable bounds are approximately MKK2M_{KK}\gtrsim 2 TeV, corresponding to a mass of the first gauge boson excitation of about 4-6 TeV. Hence additional warped dimensions offer a new way of reducing the constraints on the KK scale.Comment: 27 pages, 15 figures, v3: Additional comments in sections 1, 2 and 4. New appendix added. Five additional figures. References adde
    corecore