38 research outputs found
Influence of sea surface winds on shearwater migration detours
To test the potential effects of winds on the migratory detours of shearwaters, transequatorial migrations of 3 shearwaters, the Manx Puffin us puffinus, the Cory's Calonectris diomedea, and the Cape Verde C. edwardsii shearwaters were tracked using geolocators. Concurrent data on the direction and strength of winds were obtained from the NASA SeaWinds scatterometer to calculate daily impedance models reflecting the resistance of sea surface winds to the shearwater movements. From these models we estimated relative wind-mediated costs for the observed synthesis pathway obtained from tracked birds, for the shortest distance pathway and for other simulated alternative pathways for every day of the migration period. We also estimated daily trajectories of the minimum cost pathway and compared distance and relative costs of all pathways. Shearwaters followed 26 to 52% longer pathways than the shortest distance path. In general, estimated wind-mediated costs of both observed synthesis and simulated alternative pathways were strongly dependent on the date of departure. Costs of observed synthesis pathways were about 15% greater than the synthesis pathway with the minimum cost, but, in the Cory's and the Cape Verde shearwaters, these pathways were on average 15 to 20% shorter in distance, suggesting the extra costs of the observed pathways are compensated by saving about 2 travelling days. In Manx shearwaters, however, the distance of the observed synthesis pathway was 25% longer than that of the lowest cost synthesis pathway, probably because birds avoided shorter but potentially more turbulent pathways. Our results suggest that winds are a major determinant of the migratory routes of seabirds
Effects of competitive pressure and habitat heterogeneity on niche partitioning between Arctic and boreal congeners
The rapidly changing climate in the Arctic is expected to have a major impact on the foraging ecology of seabirds, owing to changes in the distribution and abundance of their prey but also that of competitors (e.g. southerly species expanding their range into the Arctic). Species can respond to interspecific competition by segregating along different niche axes. Here, we studied spatial, temporal and habitat segregation between two closely related seabird species: common guillemot Uria aalge (a temperate species) and Brünnich’s guillemot Uria lomvia (a true Arctic species), at two sympatric sites in Iceland that differ in their total population sizes and the availability of marine habitats. We deployed GPS and temperature-depth recorders to describe foraging locations and behaviour of incubating and chick-rearing adults. We found similar evidence of spatial segregation at the two sites (i.e. independent of population sizes), although segregation in environmental space was only evident at the site with a strong habitat gradient. Unexpectedly, temporal (and, to a limited extent, vertical) segregation appeared only at the least populated site. Overall, our results show complex relationships between the levels of inferred competition and that of segregation
Light-level geolocators reveal spatial variations in interactions between northern fulmars and fisheries
Seabird−fishery interactions are a common phenomenon of conservation concern. Here, we highlight how light-level geolocators provide promising opportunities to study these interactions. By examining raw light data, it is possible to detect encounters with artificial lights atnight, while conductivity data give insight on seabird behaviour during encounters. We used geolocator data from 336 northern fulmars Fulmarus glacialis tracked from 12 colonies in the North-East Atlantic and Barents Sea during the non-breeding season to (1) confirm that detections of artificial lights correspond to encounters with fishing vessels by comparing overlap between fishing effort and both the position of detections and the activity of birds during encounters, (2) assess spatial differences in the number of encounters among wintering areas and (3) test whethersome individuals forage around fishing vessels more often than others. Most (88.1%) of the track encountered artificial light at least once, with 9.5 ± 0.4 (SE) detections on average per 6 mo nonbreeding season. Encounters occurred more frequently where fishing effort was high, and birds from some colonies had higher probabilities of encountering lights at night. During encounters, fulmars spent more time foraging and less time resting, strongly suggesting that artificial lights reflect the activity of birds around fishing vessels. Inter-individual variability in the probability of encountering light was high (range: 0−68 encounters per 6 mo non-breeding season), meaning that some individuals were more often associated with fishing vessels than others, independently of their colony of origin. Our study highlights the potential of geolocators to study seabird−fisheryinteractions at a large scale and a low cost.publishedVersio
Cold comfort: Arctic seabirds find refugia from climate change and potential competition in marginal ice zones and fjords
Climate change alters species distributions by shifting their fundamental niche in space through time. Such effects may be exacerbated by increased inter-specific competition if climate alters species dominance where competitor ranges overlap. This study used census data, telemetry and stable isotopes to examine the population and foraging ecology of a pair of Arctic and temperate congeners across an extensive zone of sympatry in Iceland, where sea temperatures varied substantially. The abundance of Arctic Brünnich’s guillemot Uria lomvia declined with sea temperature. Accessibility of refugia in cold water currents or fjords helped support higher numbers and reduce rates of population decline. Competition with temperate Common guillemots Uria aalge did not affect abundance, but similarities in foraging ecology were sufficient to cause competition when resources are limiting. Continued warming is likely to lead to further declines of Brünnich’s guillemot, with implications for conservation status and ecosystem services
A Migratory Divide Among Red-Necked Phalaropes in the Western Palearctic Reveals Contrasting Migration and Wintering Movement Strategies
Non-breeding movement strategies of migratory birds may be expected to be flexibly adjusted to the distribution and quality of habitat, but only few studies compare movement strategies between populations using distinct migration routes and wintering areas. In thisour study, individual movement strategies of Rred-necked pPhalaropes Phalaropus lobatus, a long-distance migratory wader using saline waters in the non-breeding period, were studied using light-level geolocators. Results revealed the existence of two populations with distinct migration routes and wintering areas: one breeding in the north-eastern North Atlantic and migrating ca. 10,000 km oversea to the tropical eastern Pacific Ocean and the other breeding in Fennoscandia and Russia migrating ca. 6,000 km – largely over land – to the Arabian Sea (Indian Ocean). In line with our expectations, the transoceanic migration between the North Atlantic and the Pacific was associated with proportionately longer wings, a more even spread of stopovers in autumn and a higher migration speed in spring compared to the migration between Fennoscandian-Russian breeding grounds and the Arabian Sea. In the wintering period, birds wintering in the Pacific were stationaryresided in roughly a singlethe same area, whereas individuals wintering in the Arabian Sea showed individually consistent movementsd extensively between different areas, reflecting differences in spatio-temporal variation in primary productivity between the two wintering areas. Our study is unique in showing how habitat distribution shapes movement strategies over the entire non-breeding period within a species.Peer reviewe
Seabirds reveal mercury distribution across the North Atlantic
Author contributionsC.A. and J.F. designed research; C.A., B. Moe, A.T., S.D., V.S.B., B. Merkel, J.Å., and J.F. performed research; C.A., B. Moe, M.B.-F., A.T., S.D., V.S.B., B. Merkel, J.Å., J.L., C.P.-P., and J.F. analyzed data; C.A., B.M., V.S.B., and J.F. sample and data collection, data coordination and management, statistical methodology; H.S. sample and data contribution and Data coordination and management; D.G., M.B.-F., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., G.W.G., M.G., S.A.H., H.H.H., M.K.J., Y. Kolbeinsson, Y. Krasnov, M.L., J.L., S.-H.L., B.O., A.P., C.P.-P., T.K.R., G.H.S., P.M.T., T.L.T., and P.B. sample and data contribution; A.T., P.F. and S.D. sample and data contribution and statistical methodology; J.Å. statistical methodology; J.F. supervision; and C.A., B. Moe, H.S., D.G., A.T., S.D., V.S.B., B. Merkel, J.Å., F. Amélineau, F. Angelier, T.A.-N., O.C., S.C.-D., J.D., K.E., K.E.E., A.E., P.F., G.W.G., M.G., S.A.H., H.H.H., Y. Kolbeinsson, Y. Krasnov, S.-H.L., B.O., A.P., T.K.R., G.H.S., P.M.T., T.L.L., P.B., and J.F. wrote the paper.Peer reviewe
Six pelagic seabird species of the North Atlantic engage in a fly-and-forage strategy during their migratory movements
Bird migration is commonly defined as a seasonal movement between breeding and non-breeding grounds. It generally involves relatively straight and directed large-scale movements, with a latitudinal change, and specific daily activity patterns comprising less or no foraging and more traveling time. Our main objective was to describe how this general definition applies to seabirds. We investigated migration characteristics of 6 pelagic seabird species (little auk Alle alle, Atlantic puffin Fratercula arctica, common guillemot Uria aalge, Brünnich’s guillemot U. lomvia, black-legged kittiwake Rissa tridactyla and northern fulmars Fulmarus glacialis). We analysed an extensive geolocator positional and saltwater immersion dataset from 29 colonies in the North-East Atlantic and across several years (2008-2019). We used a novel method to identify active migration periods based on segmentation of time series of track characteristics (latitude, longitude, net-squared displacement). Additionally, we used the saltwater immersion data of geolocators to infer bird activity. We found that the 6 species had, on average, 3 to 4 migration periods and 2 to 3 distinct stationary areas during the non-breeding season. On average, seabirds spent the winter at lower latitudes than their breeding colonies and followed specific migration routes rather than non-directionally dispersing from their colonies. Differences in daily activity patterns were small between migratory and stationary periods, suggesting that all species continued to forage and rest while migrating, engaging in a ‘fly-and-forage’ migratory strategy. We thereby demonstrate the importance of habitats visited during seabird migrations as those that are not just flown over, but which may be important for re-fuelling.publishedVersio
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species