2 research outputs found

    Effects of Oil and Gas Development on Mule Deer Populations in Western North Dakota and Eastern Montana

    Get PDF
    Oil and gas production are becoming a significant part of the economy and landscape of western North Dakota and eastern Montana.  Much of the areas being developed overlap with mule deer ranges.  Our ongoing research aims to identify and quantify the direct and indirect effects of oil and gas energy development on mule deer abundance, survival, recruitment, movements and resource selection.  Since February, 2013, we have deployed 240 GPS collars in three main areas of breaks habitat: 1) in North Dakota along the Little Missouri River; 2) the east side of the Yellowstone River; and 3) just south of Culbertson, MT. These collars are being used to collect spatial data about mule deer distributions and monitor survival across areas of low, medium, high energy development.  We will also use digitized aerial survey data to estimate abundance and recruitment across various levels of development. To date we have collared 99 adult females and 110 fawns, gathering more than 300,000 deer locations, conducted 39 lab necropsies on full and partial carcasses, and conducted biannual aerial surveys in North Dakota (2 years) and Montana (1 year). Our research will address potential impacts to mule deer populations, but will also provide mitigation strategies to help minimize disturbances from further development

    Designed Host Defense Peptides for the Treatment of Bacterial Keratitis

    Get PDF
    Purpose: To limit corneal damage and potential loss of vision, bacterial keratitis must be treated aggressively. Innovation in antimicrobials is required due to the need for empirical treatment and the rapid emergence of bacterial resistance. Designed host defense peptides (dHDPs) are synthetic analogues of naturally occurring HDPs, which provide defense against invading pathogens. This study investigates the use of novel dHDPs for the treatment of bacterial keratitis. Methods: The minimum inhibitory concentrations (MICs) were determined for dHDPs on both Gram-positive and -negative bacteria. The minimum biofilm eradication concentrations (MBEC) and in vitro time-kill assays were determined. The most active dHDP, RP444, was evaluated for propensity to induce drug resistance and therapeutic benefit in a murine Pseudomonas aeruginosa keratitis model. Results: Designed HDPs were bactericidal with MICs ranging from 2 to >64 μg/mL and MBEC ranging from 6 to 750 μg/mL. In time-kill assays, dHDPs were able to rapidly reduce bacterial counts upon contact with as little as 2 μg/mL. RP444 did not induce resistance after repeated exposure of P. aeruginosa to subinhibitory concentrations. RP444 demonstrated significant efficacy in a murine model of bacterial keratitis as evidenced by a significant dose-dependent decrease in ocular clinical scores, a significantly reduced bacterial load, and substantially decreased inflammatory cell infiltrates. Conclusions: Innovative dHDPs demonstrated potent antimicrobial activity, possess a limited potential for development of resistance, and reduced the severity of murine P. aeruginosa keratitis. These studies demonstrate that a novel dHDP may have potential to treat patients with sight-threatening bacterial keratitis
    corecore