3 research outputs found

    Developing Automotive Products Using the EAST-ADL2, an AUTOSAR Compliant Architecture Description Language

    Get PDF
    International audienceCurrent development trends in automotive software feature increasing standardization of the embedded software structure. But it still remains the critical issue of the overall engineering information management to control the system definition and manage its complexity. System modeling based onan Architecture Description Language (ADL) is a way to keep these assets within one information structure. The original EAST-ADL was developed in the EAST-EEA project (www.east-eea.org) and basic concepts were reused in the AUTOSAR standardization initiative. The original EAST-ADL is currently refined in the ATESST project (www.atesst.org) to EAST-ADL2. This paper presents the results of the language extension provided by the EAST-ADL2 domain model and focuses on its possible extension of the AUTOSAR standard to support decomposition of E/E automotive systems

    IMBSA 2017: Model-Based Safety and Assessment

    No full text
    Modern automotive vehicles represent one category of CPS (Cyber-Physical Systems) that are inherently time- and safety-critical. To justify the actions for quality-of-service adaptation and safety assurance, it is fundamental to perceive the uncertainties of system components in operation, which are caused by emergent properties, design or operation anomalies. From an industrial point of view, a further challenge is related to the usages of generic purpose COTS (Commercial-Off-The-Shelf) components, which are separately developed and evolved, often not sufficiently verified and validated for specific automotive contexts. While introducing additional uncertainties in regard to the overall system performance and safety, the adoption of COTS components constitutes a necessary means for effective product evolution and innovation. Accordingly, we propose in this paper a novel approach that aims to enable advanced operation monitoring and self-assessment in regard to operational uncertainties and thereby automated performance and safety awareness. The emphasis is on the integration of several modeling technologies, including the domain-specific modeling framework EAST-ADL, the A-G contract theory and Hidden Markov Model (HMM). In particular, we also present some initial concepts in regard to the usage performance and safety awareness for quality-of-service adaptation and dynamic risk mitigation.QC 20171023TRACEESPLAND
    corecore