3 research outputs found
The Study of Nanoparticles of Magnitite of the Lipid-magnetite Suspensions by Methods of Photometry and Electronic Microscopy
With the aid of the methods of photometry and electronic microscopy, we studied the sedimentation and aggregative stability of the lipidmagnetite suspensions (LMS). Different LMS were obtained. All suspensions are sufficiently stable over time. The best results in stability were displayed by suspensions, in which the ratio Fe3O4:SAS=0,02:0,35 g or 0,04 mass %:0,70 mass % and 0,025:0,35 g or 0,05 mass %:0,70 mass %. We determined size of the particles of magnetite with SAS. The order of mean particle size is defined – it amounts to <d>~76 nm.It was found that in the course of time (0–48,0 h) and with an increase in the wavelength (210–1000 nm), a gradual increase in the coefficient of transmission is observed from 25 % (210 nm) to 71,9 % (1000 nm) at 0 hours of exposure of the suspension: from 27,5 % (210 nm) to 81,2 % (1000 nm) at the maximum period of exposure of the suspension (48 hours).The indices of LMS are determined: concentration of the particles – N=1,43 1012 сm3, in 48 hours the concentration decreased by 20 % (N=1,19·1012 сm3); r=38 nm, n=1,48, k=0,01. The distribution function of the particles by size is rather narrow and symmetrical, which indicates that the system of the synthesized nanoparticles is homogenous with a low degree of polydispersity.The UV spectra of LMS and their components were taken and analyzed. The comparison of the spectra of transmission of suspensions with different degree of dilution testifies to chemical identity of the samples.The kinetic dependences of the coefficient of transmission for the suspensions with different concentration of magnetite (Fe(ov.).), were examined, based on which we calculated the effective mean radius of the particles of the stabilized magnetite: 76–168 nm. The mean radius of the particles in the lipid suspension of magnetite without stabilizer (reff)=400 nm. Visually, LMS manifested high aggregation stability at the total time of sedimentation reaching several tens of hours.It was established that LMS can be used as the biologicallyactive and food supplements, which possess the comprehensive action: beneficial biological effect on the human organism; due to the presence of bivalent iron in magnetite and capacity to form transition complexes with oxygen and peroxide radicals (and hydroperoxides), they manifest antioxidant activity, which leads to improvement in the quality and lengthening of the period of storage of the products that contain fat. Furthermore, LMS due to Fe2+ of magnetite can be recommended as the source of easily assimilated iron and as the antianemic means. Therefore, the introduction of LMS to the food products increases its quality, nutritional and biological value
STABILITY AND MORPHOLOGICAL CHARACTERISTICS OF LIPID - MAGNETITE SUSPENSIONS
The study of stability of lipid-magnetite suspensions (LMS) was carried out using photometry and electronic microscopy. All suspensions are rather stable in time. The best results in stability were demonstrated by suspensions with ratio Fe3O4: SAS=0,02:0,35 g or 0,04 mass % : 0,70 mass % and 0,025: 0,35 g or 0,05 mass % : 0,70 mass %. The sizes of magnetite particles from SAS were determined as– <d>~76 nm.It was established, that with time (0–48,0 hours) and growth of wave length (210 – 1000 nm) is observed the gradual increase of transmission coefficient from 25 % (210 nm) to 71,9 % (1000 nm) at 0 hours of suspension ageing; from 27,5 % (210 nm) to 81,2 % (1000 nm) at maximal time of suspension ageing (48 hours).There parameters of LMS were determined: concentration of particles – N=1,43 ∙ 1012 cm-3, in 48 hours concentration decreased by 20 % (N=1,19∙1012 cm-3); r=38 nm, n=1,48, κ=0,01. The function of particles distribution by sizes is rather narrow and symmetric that certifies the system of synthesized nanoparticles as homogenous with low degree of polydispersity.Ultraviolet spectrums of LMS and their components were fixed and analyzed. Comparison of transmission spectrums of suspensions with different degree of dilution testifies to the chemical identity of samples.There were studied kinetic dependencies of transmission coefficient for suspensions with different magnetite concentration (Fegen), on which base was calculated the effective radius of particles of stabilized magnetite: 76–168 nm. The mean radius of particles in lipid suspension of magnetite without stabilizer (reff)=400 nm. Visually LMS manifested the high aggregative stability with high sedimentation time 48 hours.It was established, that LMS can be used as biologically active and feed additives with complex effect: manifest antioxidant activity, are the source of easily assimilated iron, improve quality and increase storage terms of fat-containing products. Thus, introduction of LMS in foodstuff improves its quality, nutritive and biological value