4,694 research outputs found
Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing
High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C
Large thermal Hall coefficient in bismuth
We present a systematical study of thermal Hall effect on a bismuth single
crystal by measuring resistivity, Hall coefficient, and thermal conductivity
under magnetic field, which shows a large thermal Hall coefficient comparable
to the largest one in a semiconductor HgSe. We discuss that this is mainly due
to a large mobility and a low thermal conductivity comparing theoretical
calculations, which will give a route for controlling heat current in
electronic devices.Comment: 4pages, 3 figure
Role of Oxygen Electrons in the Metal-Insulator Transition in the Magnetoresistive Oxide LaSrMnO Probed by Compton Scattering
We have studied the [100]-[110] anisotropy of the Compton profile in the
bilayer manganite. Quantitative agreement is found between theory and
experiment with respect to the anisotropy in the two metallic phases (i.e. the
low temperature ferromagnetic and the colossal magnetoresistant phase under a
magnetic field of 7 T). Robust signatures of the metal-insulator transition are
identified in the momentum density for the paramagnetic phase above the Curie
temperature. We interpret our results as providing direct evidence for the
transition from the metallic-like to the admixed ionic-covalent bonding
accompanying the magnetic transition. The number of electrons involved in this
phase transition is estimated from the area enclosed by the Compton profile
anisotropy differences. Our study demonstrates the sensitivity of the Compton
scattering technique for identifying the number and type of electrons involved
in the metal-insulator transition.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Theoretical study of kinks on screw dislocation in silicon
Theoretical calculations of the structure, formation and migration of kinks
on a non-dissociated screw dislocation in silicon have been carried out using
density functional theory calculations as well as calculations based on
interatomic potential functions. The results show that the structure of a
single kink is characterized by a narrow core and highly stretched bonds
between some of the atoms. The formation energy of a single kink ranges from
0.9 to 1.36 eV, and is of the same order as that for kinks on partial
dislocations. However, the kinks migrate almost freely along the line of an
undissociated dislocation unlike what is found for partial dislocations. The
effect of stress has also been investigated in order to compare with previous
silicon deformation experiments which have been carried out at low temperature
and high stress. The energy barrier associated with the formation of a stable
kink pair becomes as low as 0.65 eV for an applied stress on the order of 1
GPa, indicating that displacements of screw dislocations likely occur via
thermally activated formation of kink pairs at room temperature
Quantum corrections to static solutions of Nahm equation and Sin-Gordon models via generalized zeta-function
One-dimensional Yang-Mills Equations are considered from a point of view of a
class of nonlinear Klein-Gordon-Fock models. The case of self-dual Nahm
equations and non-self-dual models are discussed. A quasiclassical quantization
of the models is performed by means of generalized zeta-function and its
representation in terms of a Green function diagonal for a heat equation with
the correspondent potential. It is used to evaluate the functional integral and
quantum corrections to mass in the quasiclassical approximation.
Quantum corrections to a few periodic (and kink) solutions of the Nahm as a
particular case of the Ginzburg-Landau (phi-in-quadro) and and Sin-Gordon
models are evaluated in arbitrary dimensions. The Green function diagonal for
heat equation with a finite-gap potential is constructed by universal
description via solutions of Hermit equation. An alternative approach based on
Baker-Akhiezer functions for KP equation is proposed . The generalized
zeta-function and its derivative at zero point as the quantum corrections to
mass is expressed in terms of elliptic integrals.Comment: Workshop Nonlinear Physics and Experiment; Gallipoli, 200
Biosynthesis of Pregnenolone from Cholesterol by Mitochondrial Enzymes of Bovine Adrenal Cortex
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66357/1/j.1432-1033.1978.tb20931.x.pd
Charge state of vacancy defects in Eu-doped GaN
Eu ions have been doped into GaN in order to achieve red luminescence under current injection, where coupling between the Eu ions and intrinsic defects such as vacancies are known to play an important role. However, the charge state of the vacancies and the impact it would have on the optical and magnetic properties of the Eu ions have not been explored. Through a combination of first-principle calculations and experimental results, the influence of the charge state of the defect environment surrounding the Eu ions has been investigated. We have identified two Eu centers that are related through the charge state of a local vacancy defect. These two centers were found to exhibit a mutual metastability, such that each center can be excited in one configuration and emit as the other. This metastability was found to be dependent on temperature and the wavelength of the excitation laser. Furthermore, one of these centers was found to have an effective magnetic g factor that is substantially larger than what is expected for an isolated Eu3+ ion and is explained by a change in the charge state of the defect environment around the Eu. This prediction could also offer a new explanation for the saturation magnetization previously observed in GaN : Eu and other GaN: RE systems.112Ysciescopu
Charge state of vacancy defects in Eu-doped GaN
Eu ions have been doped into GaN in order to achieve red luminescence under current injection, where coupling between the Eu ions and intrinsic defects such as vacancies are known to play an important role. However, the charge state of the vacancies and the impact it would have on the optical and magnetic properties of the Eu ions have not been explored. Through a combination of first-principle calculations and experimental results, the influence of the charge state of the defect environment surrounding the Eu ions has been investigated. We have identified two Eu centers that are related through the charge state of a local vacancy defect. These two centers were found to exhibit a mutual metastability, such that each center can be excited in one configuration and emit as the other. This metastability was found to be dependent on temperature and the wavelength of the excitation laser. Furthermore, one of these centers was found to have an effective magnetic g factor that is substantially larger than what is expected for an isolated Eu3+ ion and is explained by a change in the charge state of the defect environment around the Eu. This prediction could also offer a new explanation for the saturation magnetization previously observed in GaN : Eu and other GaN:RE systems
Biodiversity and Spatial Heterogeneity in Semi-Natural Grasslands in a Mountain Area in Slovakia
The spatial pattern of vegetation in the following 3 semi-natural grasslands in Banska Bystrica, Slovakia, was observed in August, 1998: (1) a grassland sown with improved herbage plants after plowing in 1991, (2) a grassland oversown with improved herbage plants in 1991, and (3) a natural grassland without any treatment at the time of establishment. A new method of measuring vegetation was adopted: in each grassland, 50 quadrats 50 cm × 50 cm, composed of 4 smaller cells 25 cm × 25 cm, were set up, and all the species in each cell were recorded. The sown grassland displayed the highest species richness and diversity though its spatial heterogeneity was very high while in the natural grassland these characteristics were least pronounced. The highest species richness and diversity could be maintained on the average in the sown grasslands although their plot-to-plot variations were very large
- …