22 research outputs found
Microstructural changes in the irradiated and osteoradionecrotic bone: a SEM study
Radiation exposure is a major health concern due to bone involvement including mandible, causing deleterious effects on bone metabolism, and healing with an increasing risk of infection and osteoradionecrosis. This study aims to investigate the radiotherapy-induced microstructural changes in the human mandible by scanning electron microscopy (SEM). Mandibular cortical bone biopsies were obtained from control, irradiated, and patients with osteoradionecrosis (ORN). Bone samples were prepared for light microscopy and SEM. The SEM images were analyzed for the number of osteons, number of Haversian canal (HC), diameter of osteon (D.O), the diameter of HC (D.HC), osteonal wall thickness (O.W.Th), number of osteocytes, and number of osteocytic dendrites. The number of osteons, D.O, D.HC, O.W.Th, the number of osteocytes, and osteocytic dendrites were significantly decreased in both irradiated and ORN compared to controls (p 5 years mean radiation biopsy interval). The underlying microscopic damage in bone increases its susceptibility and contributes further to radiation-induced bone changes or even ORN.Metabolic health: pathophysiological trajectories and therap
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure
Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ~18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 X 10 -8) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 X 10 -8). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2)
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe
Microplicae: specialized surface structure of epithelial cells of wet-surfaced oral mucosa
The surface structure of the superficial cells of the oral mucosa is decorated with numerous membrane ridges, termed microplicae (MPLs). The MPL structure is typical of the epithelial surfaces that are covered with protective mucus. Cell membrane MPLs are no longer seen as passive consequences of cellular activity. The interaction between MPLs and the mucins has been demonstrated, however the role of MPL structure seen on the upper surface of the oral epithelial cells is speculative. The cell surface is of potentially great significance, as it harbors many markers for refined prognosis and targets for oral mucosal diseases and cancer therapy. With these aspects in mind, we conducted the present review of the MPL structure and function in order to form the basis for further studies of MPLs of the oral epithelial cells
Effects of irradiation in the mandibular bone loaded with dental implants. An experimental study with a canine model
© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.Radiation therapy may compromise the quality of bone around dental implants, and its ability to regenerate, remodel, and revascularize. This study aimed to describe the irradiation effect on the bone microstructure of the mandible using dental implants in a canine model. Five beagle dogs were exposed to 40 Gy fractionated radiation. In total, 20 dental implants were inserted, two in the irradiated and two in the non-irradiated side. The mandible bone blocks were subjected to 3D micro-computed tomography (µCT) imaging, later evaluated histomorphometrically by light microscopy and scanning electron microscopy. Alterations in irradiated bone were observed under µCT imaging showing an increased anisotropy, porosity, and pore volume. Bone surface-to-bone volume decreased. The bone to implant contact index was significantly reduced in the irradiated bone (75.6% ± 5.8%) as compared to the non-irradiated bone (85.1% ± 6.8%). In the irradiated mandible, osteocytes with their filopodial processes, the bone beneath the periosteum, and subperiosteal veins showed structural differences but were not significant, whereas the diameter of Haversian canals were smaller statistical significant as compared to the control side. The study highlights that radiation dosage of fractioned 40 Gy causes alterations in the alveolar bone microstructure with compatible osseointegration and clinically stable dental implants
Changes in the microenvironment of invading melanoma and carcinoma cells identified by FTIR imaging
Tumor microenvironment (TME) has become an important target for studying cancer progression in recent times. Disorientation of the collagen fiber network is a common phenomenon during cancer invasion process. In this study, using in vitro myoma organotypic model with invading melanoma and oral tongue carcinoma cell lines, we identified the influence of the cancer cells in the TME by Fourier-transform infrared (FTIR) imaging. We found major changes in the relative intensities of the collagen bands. Principal component analysis was performed to explore feasibility of classification between spectra extracted from different regions. A submolecular justification of the classification model was sought using a curve fitting analysis. Our preliminary results suggest that the features present in the amide and collagen triplet regions could serve as spectral markers for cancer-induced modifications in the TME. We suggest that FTIR method, combined with myoma invasion model, could be used to analyze various tumor cells interactions with TME during invasion processes.SCOPUS: ar.jinfo:eu-repo/semantics/publishe