14 research outputs found

    Leber's Hereditary Optic Neuropathy-Gene Therapy: From Benchtop to Bedside

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disorder caused by point mutations in mitochondrial DNA (mtDNA). Most cases are due to mutations in genes encoding subunits of the NADH-ubiquinone oxidoreductase that is Complex I of the electron transport chain (ETC). These mutations are located at nucleotide positions 3460, 11778, or 14484 in the mitochondrial genome. The disease is characterized by apoplectic, bilateral, and severe visual loss. While the mutated mtDNA impairs generation of ATP by all mitochondria, there is only a selective loss of retinal ganglion cells and degeneration of optic nerve axons. Thus, blindness is typically permanent. Half of the men and 10% of females who harbor the pathogenic mtDNA mutation actually develop the phenotype. This incomplete penetrance and gender bias is not fully understood. Additional mitochondrial and/or nuclear genetic factors may modulate the phenotypic expression of LHON. In a population-based study, the mtDNA background of haplogroup J was associated with an inverse relationship of low-ATP generation and increased production of reactive oxygen species (ROS). Effective therapy for LHON has been elusive. In this paper, we describe the findings of pertinent published studies and discuss the controversies of potential strategies to ameliorate the disease

    Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice

    Get PDF
    Although mutated G11778A NADH ubiquinone oxidoreductase subunit 4 (ND4) mitochondrial DNA (mtDNA) is firmly linked to the blindness of Leber hereditary optic neuropathy (LHON), a bona fide animal model system with mutated mtDNA complex I subunits that would enable probing the pathogenesis of optic neuropathy and testing potential avenues for therapy has yet to be developed. The mutant human ND4 gene with a guanine to adenine transition at position 11778 with an attached FLAG epitope under control of the mitochondrial heavy strand promoter (HSP) was inserted into a modified self-complementary (sc) adeno-associated virus (AAV) backbone. The HSP-ND4FLAG was directed toward the mitochondria by adding the 23 amino acid cytochrome oxidase subunit 8 (COX8) presequence fused in frame to the N-terminus of green fluorescent protein (GFP) into the AAV2 capsid open reading frame. The packaged scAAV-HSP mutant ND4 was injected into the vitreous cavity of normal mice (OD). Contralateral eyes received scAAV-GFP (OS). Translocation and integration of mutant human ND4 in mouse mitochondria were assessed with PCR, reverse transcription-polymerase chain reaction (RT-PCR), sequencing, immunoblotting, and immunohistochemistry. Visual function was monitored with serial pattern electroretinography (PERG) and in vivo structure with spectral domain optical coherence tomography (OCT). Animals were euthanized at 1 year and processed for light and transmission electron microscopy. The PCR products of the mitochondrial and nuclear DNA extracted from infected retinas and optic nerves gave the expected 500 base pair bands. RT-PCR confirmed transcription of the mutant human ND4 DNA in mice. DNA sequencing confirmed that the PCR and RT-PCR products were mutant human ND4 (OD only). Immunoblotting revealed the expression of mutant ND4FLAG (OD only). Pattern electroretinograms showed a significant decrement in retinal ganglion cell function OD relative to OS at 1 month and 6 months after AAV injections. Spectral domain optical coherence tomography showed optic disc edema starting at 1 month post injection followed by optic nerve head atrophy with marked thinning of the inner retina at 1 year. Histopathology of optic nerve cross sections revealed reductions in the optic nerve diameters of OD versus OS where transmission electron microscopy revealed significant loss of optic nerve axons in mutant ND4 injected eyes where some remaining axons were still in various stages of irreversible degeneration with electron dense aggregation. Electron lucent mitochondria accumulated in swollen axons where fusion of mitochondria was also evident. Due to the UGA codon at amino acid 16, mutant G11778A ND4 was translated only in the mitochondria where its expression led to significant loss of visual function, loss of retinal ganglion cells, and optic nerve degeneration recapitulating the hallmarks of human LHON

    Review Article Leber's Hereditary Optic Neuropathy-Gene Therapy: From Benchtop to Bedside

    No full text
    Leber's hereditary optic neuropathy (LHON) is a maternally transmitted disorder caused by point mutations in mitochondrial DNA (mtDNA). Most cases are due to mutations in genes encoding subunits of the NADH-ubiquinone oxidoreductase that is Complex I of the electron transport chain (ETC). These mutations are located at nucleotide positions 3460, 11778, or 14484 in the mitochondrial genome. The disease is characterized by apoplectic, bilateral, and severe visual loss. While the mutated mtDNA impairs generation of ATP by all mitochondria, there is only a selective loss of retinal ganglion cells and degeneration of optic nerve axons. Thus, blindness is typically permanent. Half of the men and 10% of females who harbor the pathogenic mtDNA mutation actually develop the phenotype. This incomplete penetrance and gender bias is not fully understood. Additional mitochondrial and/or nuclear genetic factors may modulate the phenotypic expression of LHON. In a population-based study, the mtDNA background of haplogroup J was associated with an inverse relationship of low-ATP generation and increased production of reactive oxygen species (ROS). Effective therapy for LHON has been elusive. In this paper, we describe the findings of pertinent published studies and discuss the controversies of potential strategies to ameliorate the disease

    Noninvasive Assessments of Optic Nerve Neurodegeneration in Transgenic Mice With Isolated Optic Neuritis

    No full text
    OCT detects RNFL loss after axons die off. In this report, we show elevated serum pNF-H levels are due to isolated optic neuritis, suggesting this biomarker may be useful for selecting at initial presentation optic neuritis patients in need of neuroprotection to prevent irreversible visual loss

    Induction of Rapid and Highly Efficient Expression of the Human ND4 Complex I Subunit in the Mouse Visual System by Self-complementary Adeno-Associated Virus

    No full text
    OBJECTIVE: To demonstrate the high efficiency and rapidity of allotopic expression of a normal human ND4 subunit of complex I in the vertebrate retina using a self-complementary adeno-associated virus (scAAV) vector for ocular gene delivery to treat acute visual loss in Leber hereditary optic neuropathy (LHON). METHODS: The nuclear-encoded human ND4 subunit fused to the P1 isoform of subunit C of adenosine tri-phosphate synthase (ATPc) mitochondrial targeting sequence and FLAG epitope was packaged in scAAV2 capsids or single-stranded (ss) AAV2 capsids. These constructs were injected into the vitreous cavities of mice. The contralateral eyes were injected with scAAV–green fluorescent protein (GFP). One week later, pattern electroretinograms and gene expression of the human ND4 subunit and GFP were evaluated. Quantitative analysis of ND4FLAG-injected eyes was assessed relative to Thy1.2-labeled retinal ganglion cells (RGCs). RESULTS: Pattern electroretinogram amplitudes remained normal in eyes inoculated with scAAV-ND4FLAG, ssAAV-ND4FLAG, and GFP. Confocal microscopy revealed the typical perinuclear mitochondrial expression of scAAV-ND4FLAG in almost the entire retinal flat mount. In contrast, scAAV-GFP expression was cytoplasmic and nuclear. Relative to Thy1.2-positive RGCs, quantification of scAAV-ND4FLAG–positive RGCs was 91% and that of ssAAV-ND4FLAG–positive RGCs was 51%. CONCLUSION: Treatment of acute visual loss due to LHON may be possible with a normal human ND4 subunit gene of complex I, mutated in most cases of LHON, when delivered by an scAAV vector. CLINICAL RELEVANCE: Unlike most retinal degenerations that result in slowly progressive loss of vision over many years, LHON due to mutated mitochondrial DNA results in apoplectic, bilateral severe and usually irreversible visual loss. For rescue of acute visual loss in LHON, a highly efficient and rapid gene expression system is required

    Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system

    No full text
    PURPOSE. To evaluate the efficiency and safety of AAV-mediated gene delivery of a normal human ND4 complex I subunit in the mouse visual system. METHODS. A nuclear encoded human ND4 subunit fused to the ATPc mitochondrial targeting sequence and FLAG epitope were packaged in AAV2 capsids that were injected into the right eyes of mice. AAV-GFP was injected into the left eyes. One month later, pattern electroretinography (PERG), rate of ATP synthesis, gene expression, and incorporation of the human ND4 subunit into the murine complex I were evaluated. Quantitative analysis of ND4FLAG-injected eyes was assessed compared with green fluorescent protein (GFP)-injected eyes. RESULTS. Rates of ATP synthesis and PERG amplitudes were similar in ND4FLAG-and GFP-inoculated eyes. PERG latency was shorter in eyes that received ND4FLAG. Immunoprecipitated murine complex I gave the expected 52-kDa band of processed human ND4FLAG. Confocal microscopy revealed perinuclear expression of FLAG colocalized with mitochondria-specific fluorescent dye. Transmission electron microscopy revealed FLAG immunogold within mitochondria. Compared with Thy1.2-positive retinal ganglion cells (RGCs), quantification was 38% for FLAG-positive RGCs and 65% for GFP-positive RGCs. Thy1.2 positive-RGC counts in AAV-ND4FLAG were similar to counts in control eyes injected with AAV-GFP. CONCLUSIONS. Human ND4 was properly processed and imported into the mitochondria of RGCs and axons of mouse optic nerve after intravitreal injection. Although it had approximately two-thirds the efficiency of GFP, the expression of normal human ND4 in murine mitochondria did not induce the loss of RGCs, ATP synthesis, or PERG amplitude, suggesting that allotopic ND4 may be safe for the treatment of patients with Leber hereditary optic neuropathy. (Invest Ophthalmol Vis Sci. 2009;50:4205-4214
    corecore