45 research outputs found

    Cross-ancestry genome-wide analysis of atrial fibrillation unveils disease biology and enables cardioembolic risk prediction

    Get PDF
    心房細動の遺伝的基盤を解明 --大規模ゲノムデータによる病態解明と遺伝的リスクスコア構築--. 京都大学プレスリリース. 2023-01-20.Atrial fibrillation (AF) is a common cardiac arrhythmia resulting in increased risk of stroke. Despite highly heritable etiology, our understanding of the genetic architecture of AF remains incomplete. Here we performed a genome-wide association study in the Japanese population comprising 9, 826 cases among 150, 272 individuals and identified East Asian-specific rare variants associated with AF. A cross-ancestry meta-analysis of >1 million individuals, including 77, 690 cases, identified 35 new susceptibility loci. Transcriptome-wide association analysis identified IL6R as a putative causal gene, suggesting the involvement of immune responses. Integrative analysis with ChIP-seq data and functional assessment using human induced pluripotent stem cell-derived cardiomyocytes demonstrated ERRg as having a key role in the transcriptional regulation of AF-associated genes. A polygenic risk score derived from the cross-ancestry meta-analysis predicted increased risks of cardiovascular and stroke mortalities and segregated individuals with cardioembolic stroke in undiagnosed AF patients. Our results provide new biological and clinical insights into AF genetics and suggest their potential for clinical applications

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Improved exchange bias and blocking temperature of PtCr/PtMn bilayer antiferromagnets

    No full text
    Herein, we investigated exchange coupling in PtCr/CoFe, PtCr/PtMn/CoFe, and PtMn/CoFe film structures, demonstrating that Pt51Cr49(30 nm)/Co90Fe10(10 nm), Pt51Cr49(27.2 nm)/Pt50Mn50/(2.8 nm)/Co90Fe10(10 nm), and Pt50Mn50(30 nm)/Co90Fe10(10 nm) structures annealed at 350 °C for 20 h in a 10-kOe field featured unidirectional anisotropy constants (Jk) of 0.09, 0.56, and 0.32 erg/cm2, respectively. In the case of the Ni50Fe12Cr38(4 nm)/Pt51Cr49(30 − X nm)/Pt50Mn50(X nm)/Co90Fe10(10 nm)/Ta(10 nm) [X = 0–30 nm] film system, Jk linearly and steeply increased with increasing X to reach a maximum of 0.56 erg/cm2 at X = 2.8 nm and then decreased in a complicated nonlinear fashion as X further increased to 30 nm. On the other hand, the blocking temperature of Pt51Cr49(28 nm)/Pt50Mn50/(2 nm)/Co90Fe10(10 nm) was determined as 500 °C and nearly equaled that of Pt51Cr49(30 nm)/Co90Fe10(10 nm), significantly exceeding the value of 400 °C determined for Pt50Mn50(30 nm)/Co90Fe10(10 nm). These results imply that the exchange bias field of the Ni50Fe12Cr38(4 nm)/Pt51Cr49(30 − X nm)/Pt50Mn50/(X nm)/Co90Fe10(10 nm)/Ta(10 nm) system is ultimately determined by the chemical composition and the modification of the antiferromagnetic spin structure at the ferromagnet–antiferromagnet interface, while the blocking temperature is almost entirely determined by the volume fraction of the PtCr component

    Evaluation of Pathological Association between Stroke-Related QTL and Salt-Induced Renal Injury in Stroke-Prone Spontaneously Hypertensive Rat

    No full text
    The stroke-prone spontaneously hypertensive rat (SHRSP) suffers from severe hypertension and hypertensive organ damage such as cerebral stroke and kidney injury under salt-loading. By a quantitative trait locus (QTL) analysis between SHRSP and SHR (the stroke-resistant parental strain of SHRSP), two major QTLs for stroke susceptibility were identified on chromosomes 1 and 18 of SHRSP, which were confirmed in congenic strains constructed between SHRSP and SHR. As the progression of renal dysfunction was suggested to be one of the key factors inducing stroke in SHRSP, we examined effects of the stroke-related QTLs on kidney injury using two congenic strains harboring either of SHRSP-derived fragments of chromosomes 1 and 18 in the SHR genome. The congenic strains were challenged with 1% NaCl solution for 4 weeks; measurement of systolic blood pressure and urinary isoprostane level (a marker for oxidative stress) and evaluation of renal injury by quantification of genetic marker expression and histological examination were performed. We found that the congenic rats with SHRSP-derived fragment of chromosome 18 showed more severe renal damage with higher expression of Col1α-1 (a genetic marker for renal fibrosis) and higher urinary isoprostane level. In contrast, the fragment of chromosome 1 from SHRSP did not give such effects on SHR. Blood pressure was not greater in either of the congenic strains when compared with SHR. We concluded that the QTL region on chromosome 18 might deteriorate salt-induced renal injury in SHR through a blood pressure-independent mechanism

    A Prospective Validation Study of Lung Cancer Gene Panel Testing Using Cytological Specimens

    No full text
    Background: Genetic panel tests require sufficient tissue samples, and therefore, cannot always be performed. Although collecting cytological specimens is easier than tissue collection, there are no validation studies on the diagnostic accuracy of lung cancer gene panel tests using cytology samples. Methods: Using an amplicon-based high-sensitivity next-generation sequencing panel test capable of measuring eight druggable genes, we prospectively enrolled consecutive patients who underwent diagnostic procedures. We evaluated the analysis accuracy rate, nucleic acid yield, and the quality of cytological specimens under brushing, needle aspiration, and pleural effusion. We then compared these specimens with collected tissue samples. Results: In 163 prospectively enrolled cases, nucleic acid extraction and analysis accuracy was 100% in cases diagnosed with adenocarcinoma. Gene mutations were found in 68.7% of cases with 99.5% (95% CI: 98.2–99.9) concordance to companion diagnostics. The median DNA/RNA yield and DNA/RNA integrity number were 475/321 ng and 7.9/5.7, respectively. The correlation coefficient of the gene allele ratio in 64 cases compared with tissue samples was 0.711. Conclusion: The success of gene analysis using cytological specimens was high, and the yield and quality of the extracted nucleic acid were sufficient for panel analysis. Moreover, the allele frequency of gene mutations in cytological specimens showed high correlations with tissue specimens
    corecore