1,719 research outputs found

    Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Get PDF
    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft

    Power System Trade Studies for the Lunar Surface Access Module

    Get PDF
    A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power

    The Effects of Using an Information Literacy Model on the Information Seeking Behavior of Sixth-Grade Students

    Get PDF
    This action research study describes how teaching an information literacy model affects the information behavior of sixth-grade students. The theoretical framework that supported this study was Carol Kuhlthau’s Information Search Process or ISP (1989). This study used a sequential mixed-methods design to examine the following questions: “How will teaching the Simple Four information literacy model (Alewine, 2006) to sixth-grade students affect their information seeking behavior?” The study also explored the effects the model had on students’ affective behavior through the second research question: “How will teaching the Simple Four information literacy model (Alewine, 2006) to sixth-grade students affect their confidence and anxiety levels when seeking information?” The participants of this study included one sixth-grade social studies class, comprised of 26 students. Data collection instruments included pre- and post-questionnaires, interviews, and participant observations. Results of this study indicated that there was a statistically significant increase in the self-efficacy and confidence levels of students after using the Simple Four model (Alewine, 2006). There was not a statistically significant decrease in the anxiety levels of students after using the model. Students found the model beneficial during their research tasks with the organization of their information, help in understanding and remembering sources, a reduction in negative feelings, metacognition, and the revision of their work

    A solar power system for an early Mars expedition

    Get PDF
    As NASA looks at missions that will expand human presence in the solar system, the power requirements for such missions need to be defined, developed and analyzed. One mission under consideration consists of a 40 day manned Mars surface expedition to perform science experiments. The mission time was centered around an aerocentric longitude (Ls) of 90 deg to lessen the probability of an occurrence of a local or planetary dust storm. The mission site was arbitrarily located at the Martian equator. The power requirements were assumed to be 40 kWe for life support and experiment power during the Martian day and 20 kWe for life support during the Martian night. A solar energy system consisting of roll-out amorphous silicon arrays and a hydrogen-oxygen regenerative fuel cell energy storage system was chosen for the study. The power available from a roll-out array, when plotted against time, approaches a cosine-like curve and depends on both array area and the amount of solar irradiance impinging on its horizontal surface. The array is sized to provide at least 20 KWe when the sun is 12.5 deg above the horizon and ramp up to 140 kWe peak power at Martian noon. In this configuration, the array is capable of supplying 40 KWe continuously to the user for the majority of the Martian day while supplying the excess energy to the electrolyzer portion of the energy storage system. A roll-out, pumped loop radiator system is used to dissipate the waste heat produced by the fuel cell. The power management and distribution system inverts the power from the individual solar array sub-modules and the fuel cell stacks and connects them to a 440 VAC single phase 20 kHz main bus. The total power system is comprised of 80 individual solar array modules with an integral bus and three energy storage modules consisting of fuel cell and electrolyzer stacks, reactant storage tanks, and a roll-out radiator. Power system mass, stowed volume, and deployed area were determined. Day/night power splits of 40/10 kWe, 40/30 kWe, and 40/40 kWe were also considered to determine the impact of a range of nighttime power requirements on the baseline system

    Automated operation of a home made torque magnetometer using LabVIEW

    Full text link
    In order to simplify and optimize the operation of our home made torque magnetometer we created a new software system. The architecture is based on parallel, independently running instrument handlers communicating with a main control program. All programs are designed as command driven state machines which greatly simplifies their maintenance and expansion. Moreover, as the main program may receive commands not only from the user interface, but also from other parallel running programs, an easy way of automation is achieved. A program working through a text file containing a sequence of commands and sending them to the main program suffices to automatically have the system conduct a complex set of measurements. In this paper we describe the system's architecture and its implementation in LabVIEW.Comment: 6 pages, 7 figures, submitted to Rev. Sci. Inst

    An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    Get PDF
    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared

    SEI rover solar-electrochemical power system options

    Get PDF
    A trade study of power system technology for proposed lunar vehicles and servicers is presented. A variety of solar-based power systems were selected and analyzed for each. The analysis determined the power system mass, volume, and deployed area. A comparison was made between periodic refueling/recharging systems and onboard power systems to determine the most practical system. The trade study concluded that the power system significantly impacts the physical characteristics of the vehicle. The refueling/recharging systems were lighter and more compact, but dependent on availability of established lunar base infrastructure. Onboard power systems pay a mass penalty for being fully developed systems

    Solar Electric Power System Analyses for Mars Surface Missions

    Get PDF
    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology

    A solar photovoltaic power system for use in Antarctica

    Get PDF
    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys, and provided a six-person field team with electrical power for personal computers and printers, lab equipment, lighting, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering a total of 1.5 kWe peak power, three lead-acid gel battery modules supplying 2.4 kWh, and an electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for ease of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both an environmental and cost standpoint, is interested in the use of alternate forms of energy, such as solar power. Such a power system also will provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts

    Acid-Mediated N-Iodosuccinimide-Based Thioglycoside Activation for the Automated Solution-Phase Synthesis of α-1,2-Linked-Rhamnopyranosides

    Get PDF
    Carbohydrate structures are often complex. Unfortunately, synthesis of the range of sugar combinations precludes the use of a single coupling protocol or set of reagents. Adapting known, reliable bench-chemistry reactions to work via automation will help forward the goal of synthesizing a broad range of glycans. Herein, the preparation of di- and tri-saccharides of alpha 1→2 rhamnan fragments is demonstrated using thioglycoside donors with the development for a solution-phase-based automation platform of commonly used activation conditions using N-iodosuccinimide (NIS) with trimethylsilyl triflate. Byproducts of the glycosylation reaction are shown to be compatible with hydrazine-based deprotection conditions, lending broader functionality to this method as only one fluorous-solid-phase extraction step per coupling/deprotection cycle is required
    • …
    corecore