113 research outputs found
Mechanisms of Spontaneous Current Generation in an Inhomogeneous d-Wave Superconductor
A boundary between two d-wave superconductors or an s-wave and a d-wave
superconductor generally breaks time-reversal symmetry and can generate
spontaneous currents due to proximity effect. On the other hand, surfaces and
interfaces in d-wave superconductors can produce localized current-carrying
states by supporting the T-breaking combination of dominant and subdominant
order parameters. We investigate spontaneous currents in the presence of both
mechanisms and show that at low temperature, counter-intuitively, the
subdominant coupling decreases the amplitude of the spontaneous current due to
proximity effect. Superscreening of spontaneous currents is demonstrated to be
present in any d-d (but not s-d) junction and surface with d+id' order
parameter symmetry. We show that this supercreening is the result of
contributions from the local magnetic moment of the condensate to the
spontaneous current.Comment: 4 pages, 5 figures, RevTe
Domain structure of bulk ferromagnetic crystals in applied fields near saturation
We investigate the ground state of a uniaxial ferromagnetic plate with
perpendicular easy axis and subject to an applied magnetic field normal to the
plate. Our interest is the asymptotic behavior of the energy in macroscopically
large samples near the saturation field. We establish the scaling of the
critical value of the applied field strength below saturation at which the
ground state changes from the uniform to a branched domain magnetization
pattern and the leading order scaling behavior of the minimal energy.
Furthermore, we derive a reduced sharp-interface energy giving the precise
asymptotic behavior of the minimal energy in macroscopically large plates under
a physically reasonable assumption of small deviations of the magnetization
from the easy axis away from domain walls. On the basis of the reduced energy,
and by a formal asymptotic analysis near the transition, we derive the precise
asymptotic values of the critical field strength at which non-trivial
minimizers (either local or global) emerge. The non-trivial minimal energy
scaling is achieved by magnetization patterns consisting of long slender
needle-like domains of magnetization opposing the applied fieldComment: 38 pages, 7 figures, submitted to J. Nonlin. Sci
Striped periodic minimizers of a two-dimensional model for martensitic phase transitions
In this paper we consider a simplified two-dimensional scalar model for the
formation of mesoscopic domain patterns in martensitic shape-memory alloys at
the interface between a region occupied by the parent (austenite) phase and a
region occupied by the product (martensite) phase, which can occur in two
variants (twins). The model, first proposed by Kohn and Mueller, is defined by
the following functional: where
is periodic in and almost everywhere.
Conti proved that if then the minimal specific
energy scales like ,
as . In the regime , we improve Conti's results, by computing exactly the
minimal energy and by proving that minimizers are periodic one-dimensional
sawtooth functions.Comment: 29 pages, 3 figure
Froth-like minimizers of a non local free energy functional with competing interactions
We investigate the ground and low energy states of a one dimensional non
local free energy functional describing at a mean field level a spin system
with both ferromagnetic and antiferromagnetic interactions. In particular, the
antiferromagnetic interaction is assumed to have a range much larger than the
ferromagnetic one. The competition between these two effects is expected to
lead to the spontaneous emergence of a regular alternation of long intervals on
which the spin profile is magnetized either up or down, with an oscillation
scale intermediate between the range of the ferromagnetic and that of the
antiferromagnetic interaction. In this sense, the optimal or quasi-optimal
profiles are "froth-like": if seen on the scale of the antiferromagnetic
potential they look neutral, but if seen at the microscope they actually
consist of big bubbles of two different phases alternating among each other. In
this paper we prove the validity of this picture, we compute the oscillation
scale of the quasi-optimal profiles and we quantify their distance in norm from
a reference periodic profile. The proof consists of two main steps: we first
coarse grain the system on a scale intermediate between the range of the
ferromagnetic potential and the expected optimal oscillation scale; in this way
we reduce the original functional to an effective "sharp interface" one. Next,
we study the latter by reflection positivity methods, which require as a key
ingredient the exact locality of the short range term. Our proof has the
conceptual interest of combining coarse graining with reflection positivity
methods, an idea that is presumably useful in much more general contexts than
the one studied here.Comment: 38 pages, 2 figure
Transformation elastodynamics and active exterior acoustic cloaking
This chapter consists of three parts. In the first part we recall the
elastodynamic equations under coordinate transformations. The idea is to use
coordinate transformations to manipulate waves propagating in an elastic
material. Then we study the effect of transformations on a mass-spring network
model. The transformed networks can be realized with "torque springs", which
are introduced here and are springs with a force proportional to the
displacement in a direction other than the direction of the spring terminals.
Possible homogenizations of the transformed networks are presented, with
potential applications to cloaking. In the second and third parts we present
cloaking methods that are based on cancelling an incident field using active
devices which are exterior to the cloaked region and that do not generate
significant fields far away from the devices. In the second part, the exterior
cloaking problem for the Laplace equation is reformulated as the problem of
polynomial approximation of analytic functions. An explicit solution is given
that allows to cloak larger objects at a fixed distance from the cloaking
device, compared to previous explicit solutions. In the third part we consider
the active exterior cloaking problem for the Helmholtz equation in 3D. Our
method uses the Green's formula and an addition theorem for spherical outgoing
waves to design devices that mimic the effect of the single and double layer
potentials in Green's formula.Comment: Submitted as a chapter for the volume "Acoustic metamaterials:
Negative refraction, imaging, lensing and cloaking", Craster and Guenneau
ed., Springe
Enhancement of near-cloaking. Part II: the Helmholtz equation
The aim of this paper is to extend the method of improving cloaking
structures in the conductivity to scattering problems. We construct very
effective near-cloaking structures for the scattering problem at a fixed
frequency. These new structures are, before using the transformation optics,
layered structures and are designed so that their first scattering coefficients
vanish. Inside the cloaking region, any target has near-zero scattering cross
section for a band of frequencies. We analytically show that our new
construction significantly enhances the cloaking effect for the Helmholtz
equation.Comment: 16pages, 12 fugure
Modeling of complex oxide materials from the first principles: systematic applications to vanadates RVO3 with distorted perovskite structure
"Realistic modeling" is a new direction of electronic structure calculations,
where the main emphasis is made on the construction of some effective
low-energy model entirely within a first-principle framework. Ideally, it is a
model in form, but with all the parameters derived rigorously, on the basis of
first-principles electronic structure calculations. The method is especially
suit for transition-metal oxides and other strongly correlated systems, whose
electronic and magnetic properties are predetermined by the behavior of some
limited number of states located near the Fermi level. After reviewing general
ideas of realistic modeling, we will illustrate abilities of this approach on
the wide series of vanadates RVO3 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, and Y)
with distorted perovskite structure. Particular attention will be paid to
computational tools, which can be used for microscopic analysis of different
spin and orbital states in the partially filled t2g-band. We will explicitly
show how the lifting of the orbital degeneracy by the monoclinic distortion
stabilizes C-type antiferromagnetic (AFM) state, which can be further
transformed to the G-type AFM state by changing the crystal distortion from
monoclinic to orthorhombic one. Two microscopic mechanisms of such a
stabilization, associated with the one-electron crystal field and electron
correlation interactions, are discussed. The flexibility of the orbital degrees
of freedom is analyzed in terms of the magnetic-state dependence of interatomic
magnetic interactions.Comment: 23 pages, 13 figure
Mathematical analysis of the two dimensional active exterior cloaking in the quasistatic regime
We design a device that generates fields canceling out a known probing field
inside a region to be cloaked while generating very small fields far away from
the device. The fields we consider satisfy the Laplace equation, but the
approach remains valid in the quasistatic regime in a homogeneous medium. We
start by relating the problem of designing an exterior cloak in the quasistatic
regime to the classic problem of approximating a harmonic function with
harmonic polynomials. An explicit polynomial solution to the problem was given
earlier in [Phys. Rev. Lett. 103 (2009), 073901]. Here we show convergence of
the device field to the field needed to perfectly cloak an object. The
convergence region limits the size of the cloaked region, and the size and
position of the device.Comment: submitted to Analysis and Mathematical Physic
Reduced partition function ratios of iron and oxygen in goethite
First-principles calculations based on the density functional theory (DFT) with or without the addition of a Hubbard U correction, are performed on goethite in order to determine the iron and oxygen reduced partition function ratios (β-factors). The calculated iron phonon density of states (pDOS), force constant and β-factor are compared with reevaluated experimental β-factors obtained from Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements. The reappraisal of old experimental data is motivated by the erroneous previous interpretation of the low- and high-energy ends of the NRIXS spectrum of goethite and jarosite samples (Dauphas et al., 2012). Here the NRIXS data are analyzed using the SciPhon software that corrects for non-constant baseline. New NRIXS measurements also demonstrate the reproducibility of the results. Unlike for hematite and pyrite, a significant discrepancy remains between DFT, NRIXS and the existing Mössbauer-derived data. Calculations suggest a slight overestimation of the NRIXS signal possibly related to the baseline definition. The intrinsic features of the samples studied by NRIXS and Mössbauer spectroscopy may also contribute to the discrepancy (e.g., internal structural and/or chemical defects, microstructure, surface contribution). As for oxygen, DFT results indicate that goethite and hematite have similar β-factors, which suggests almost no fractionation between the two minerals at equilibrium
- …