5,456 research outputs found

    Lattice deformations at martensite-martensite interfaces in Ni-Al

    Get PDF
    The atomic configurations at macrotwin interfaces between microtwinned martensite plates in Ni65Al35Ni_{65}Al_{35} material are investigated using high resolution transmission electron microscopy (HRTEM). The observed structures are interpreted in view of possible formation mechanisms of these interfaces. A distinction is made between cases in which the microtwins, originating from mutually perpendicular \{110\} austenite planes, enclose a final angle larger or smaller than 90∘90^{\circ}, measured over the boundary. Two different configurations, one with crossing microtwins and the other with ending microtwins producing a step configuration are described. The latter is related with the existence of microtwin sequences with changing variant widths. Although both features appear irrespective of the material’s preparation technique, rapid solidification seems to prefer the step configuration. Depending on the actual case, tapering, bending and tip splitting of the small microtwin variants is observed. Sever lattice deformations and reorientations occur in a region of 5 – 10 nm around the interface while sequences of single plane ledges gradually bending the microtwins are found up to 50 nm away form the interface. These structures and deformations are interpreted in view of the need to accommodate any remaining stresses

    Recoverable Strains in Shape-Memory Polycrystals

    Get PDF
    Many alloys display the shape-memory effect in single crystal form, however the degree to which they retain this effect in polycrystalline form varies widely. We propose a theoretical explanation for this difference, showing that the recoverable strain of a polycrystal depends on the texture of the polycrystal, the transformation strain of the underlying martensitic transformation and especially critically on the change of symmetry during the underlying transformation. Roughly, we find that the greater the change in symmetry during transformation, the greater the recoverable strain. Our results agree with experimental observations, and provide guidance for the improvement of the shape-memory effect in polycrystals

    Electromagnetic analysis of arbitrarily shaped pinched carpets

    Full text link
    We derive the expressions for the anisotropic heterogeneous tensors of permittivity and perme- ability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map a non convex region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components, and this may lead to some broadband cloaking.Comment: 6 pages, 6 figures, Current Status of Manuscript: 19Apr10 26May10-Sent on appeal;report rcvd 29Dec09 13Apr10-Ed. decision and/or ref. comments to author;response rcvd 04Dec09 21Dec09-Ed. decision and/or ref. comments to author;response rcvd 01Dec09-Transferred from PRL to PRA 18Aug09 30Nov09-Ed.decision and/or ref. comments to author;response rcvd 14Aug09 - Correspondence sent to autho

    The Taylor Estimate of Recoverable Strains in Shape-Memory Polycrystals

    Get PDF
    Shape-memory behavior ls the ability of ccrwin materials to recover, on heating, apparently plastic deformation sustained below a critical temperature. Some materials have good shape-memory behavior as single crystals but little or none as polycrystals, while others have good shape-memory behavior even as polycrystals. Bhattacharya and Kohn (1996. 1997) have proposed a framework to understand this difference. They use energy minimization and the Taylor estimate to argue that the recoverable strains in a polycrystal depend not only on the texture of the polycrystal and the transformation, but critically on the change in symmetry during the underlying martensitic phase transformation. Their results agree with the experimental observations. Shu and Bhattacharya (1997) have also used the Taylor estimate to study the effect of texture in polycrys- tals of Nickel-Titanium and Copper based shape-memory alloys. The use of the Taylor estimate was evaluated in some detail in Bhattacharya and Kohn ( 1997) and more recently in Shu and Bhattacharya (1997) and Shu (1997). In this short report, we summarize the model of recoverable strain and discuss some results that allow us to evaluate the Taylor estimate

    Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3

    Get PDF
    Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability mu_a [H(omega) oriented within the hexagonal plane] below the Neel temperature T_N. This excitation softens from 41 to 32 cm-1 on heating and finally disappears above T_N. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity epsilon_c within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases on heating towards room temperature thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both epsilon_c and epsilon_a spectra and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons; however, their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon- paramagnon differential absorption processes. The latter is enabled by a strong short-range in-plane spin correlations in the paramagnetic phase.Comment: subm. to PR

    Ground state instability in systems of strongly interacting fermions

    Full text link
    We analyze stability of a fermion system with model repulsive pair interaction potential. The possibility for different types of restructuring of the Fermi ground state (at sufficiently great coupling constant) is related to the analytic properties of such potential. In particular, for the screened Coulomb law it is shown that the restructuring cannot be of the Fermi condensation type, known earlier for some exactly solvable models, and instead it belongs to the class of topological transitions (TT). For this model, a phase diagram has been built in the variables "screening parameter - coupling constant" which displays two kinds of TT: a 5/2-kind similar to the known Lifshitz transitions in metals, and a 2-kind characteristic for a uniform strongly interacting system.Comment: The article has 11 pages, in Latex 2e (from Lyx), 3 eps figures or a ps fil

    First principles study of the multiferroics BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}: Structure, polarization, and magnetic ordering temperature

    Full text link
    We present results of an {\it ab initio} density functional theory study of three bismuth-based multiferroics, BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}. We disuss differences in the crystal and electronic structure of the three systems, and we show that the application of the LDA+UU method is essential to obtain realistic structural parameters for Bi2_{2}FeCrO6_{6}. We calculate the magnetic nearest neighbor coupling constants for all three systems and show how Anderson's theory of superexchange can be applied to explain the signs and relative magnitudes of these coupling constants. From the coupling constants we then obtain a mean-field approximation for the magnetic ordering temperatures. Guided by our comparison of these three systems, we discuss the possibilities for designing a multiferroic material with large magnetization above room temperature.Comment: 8 Pages, 4 Figure

    Thermodynamic Properties of Generalized Exclusion Statistics

    Full text link
    We analytically calculate some thermodynamic quantities of an ideal gg-on gas obeying generalized exclusion statistics. We show that the specific heat of a gg-on gas (g≠0g \neq 0) vanishes linearly in any dimension as T→0T \to 0 when the particle number is conserved and exhibits an interesting dual symmetry that relates the particle-statistics at gg to the hole-statistics at 1/g1/g at low temperatures. We derive the complete solution for the cluster coefficients bl(g)b_l(g) as a function of Haldane's statistical interaction gg in DD dimensions. We also find that the cluster coefficients bl(g)b_l(g) and the virial coefficients al(g)a_l(g) are exactly mirror symmetric (ll=odd) or antisymmetric (ll=even) about g=1/2g=1/2. In two dimensions, we completely determine the closed forms about the cluster and the virial coefficients of the generalized exclusion statistics, which exactly agree with the virial coefficients of an anyon gas of linear energies. We show that the gg-on gas with zero chemical potential shows thermodynamic properties similar to the photon statistics. We discuss some physical implications of our results.Comment: 24 pages, Revtex, Corrected typo

    Continuum elasticity theory of edge excitations in a two-dimensional electron liquid with finite range interactions

    Get PDF
    We make use of continuum elasticity theory to investigate the collective modes that propagate along the edge of a two-dimensional electron liquid or crystal in a magnetic field. An exact solution of the equations of motion is obtained with the following simplifying assumptions: (i) The system is {\it macroscopically} homogeneous and isotropic in the half-plane delimited by the edge (ii) The electron-electron interaction is of finite range due to screening by external electrodes (iii) The system is nearly incompressible. At sufficiently small wave vector qq we find a universal dispersion curve ω∼q\omega \sim q independent of the shear modulus. At larger wave vectors the dispersion can change its form in a manner dependent on the comparison of various length scales. We obtain analytical formulas for the dispersion and damping of the modes in various physical regimes.Comment: 3 figure

    Itinerant in-plane magnetic fluctuations and many-body correlations in Nax_xCoO2_2

    Full text link
    Based on the {\it ab-initio} band structure for Nax_xCoO2_2 we derive the single-electron energies and the effective tight-binding description for the t2gt_{2g} bands using projection procedure. Due to the presence of the next-nearest-neighbor hoppings a local minimum in the electronic dispersion close to the Γ\Gamma point of the first Brillouin zone forms. Correspondingly, in addition to a large Fermi surface an electron pocket close to the Γ\Gamma point emerges at high doping concentrations. The latter yields the new scattering channel resulting in a peak structure of the itinerant magnetic susceptibility at small momenta. This indicates dominant itinerant in-plane ferromagnetic fluctuations above certain critical concentration xmx_m, in agreement with neutron scattering data. Below xmx_m the magnetic susceptibility shows a tendency towards the antiferromagnetic fluctuations. We further analyze the many-body effects on the electronic and magnetic excitations using various approximations applicable for different U/tU/t ratio.Comment: 10 page
    • …
    corecore