28 research outputs found

    Expansion of Vortex Cores by Strong Electronic Correlation in La2−x_{2-x}Srx_xCuO4_4 at Low Magnetic Induction

    Full text link
    The vortex core radius \rv, defined as the peak position of the supercurrent around the vortex, has been determined by muon spin rotation measurements in the mixed state of \lscox for x=0.13x=0.13, 0.15, and 0.19. At lower doping (x=0.13 and 0.15), \rv(T) increases with decreasing temperature T, which is opposite to the behavior predicted by the conventional theory. Moreover, \rv(T\to0) is significantly larger than the Ginsburg-Landau coherence length determined by the upper critical field, and shows a clear tendency to decrease with increasing the doping x. These features can be qualitatively reproduced in a microscopic model involving antiferromagnetic electronic correlations.Comment: 6 pages, 4 figures, to be published in Phys. Rev.

    Wigner's quantum phase space current in weakly anharmonic weakly excited two-state systems

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.There are no phase-space trajectories for anharmonic quantum systems, but Wigner’s phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics – finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg’s uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J . We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J ’s discrete stagnation points, how these arise and how a quantum system’s dynamics is constrained by the stagnation points’ topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ̄ h or vanishing anharmonicity, does not pointwise converge to classical dynamics.Peer reviewe

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    A review of techniques for parameter sensitivity analysis of environmental models

    Full text link
    Mathematical models are utilized to approximate various highly complex engineering, physical, environmental, social, and economic phenomena. Model parameters exerting the most influence on model results are identified through a ‘sensitivity analysis’. A comprehensive review is presented of more than a dozen sensitivity analysis methods. This review is intended for those not intimately familiar with statistics or the techniques utilized for sensitivity analysis of computer models. The most fundamental of sensitivity techniques utilizes partial differentiation whereas the simplest approach requires varying parameter values one-at-a-time. Correlation analysis is used to determine relationships between independent and dependent variables. Regression analysis provides the most comprehensive sensitivity measure and is commonly utilized to build response surfaces that approximate complex models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42691/1/10661_2004_Article_BF00547132.pd

    Pion and Kaon multiplicities in heavy quark jets from e+e− annihilation at 29 GeV

    Full text link

    COSMOS: Hubble Space Telescope Observations

    Get PDF
    The Cosmic Evolution Survey (COSMOS) was initiated with an extensive allocation (590 orbits in Cycles 12-13) using the Hubble Space Telescope (HST) for high-resolution imaging. Here we review the characteristics of the HST imaging with the Advanced Camera for Surveys (ACS) and parallel observations with NICMOS and WFPC2. A square field (1.8 deg2) has been imaged with single-orbit ACS I-band F814W exposures with 50% completeness for sources 0.5'' in diameter at IAB = 26.0 mag. The ACS is a key part of the COSMOS survey, providing very high sensitivity and high-resolution (0.09'' FWHM and 0.05'' pixels) imaging and detecting a million objects. These images yield resolved morphologies for several hundred thousand galaxies. The small HST PSF also provides greatly enhanced sensitivity for weak-lensing investigations of the dark matter distribution
    corecore