80 research outputs found

    Unlocking novel opportunities: How online ideation platforms implicitly guide employees toward better ideas by spurring their desire to innovate

    Get PDF
    Employees' innovative behaviour becomes increasingly important for organizational success. Companies try to improve their innovation capabilities by supporting and motivating employees to show innovative behaviour. Particularly online ideation platforms become relevant because they create new opportunities for employees to be innovative. This paper investigates how exposure to online ideation platforms' unique capabilities stimulates intrinsic motivation toward innovative behaviour and ultimately the submission of high‐quality ideas. Based on expectancy and channel expansion theories, we derive a framework with four intrinsic motivational forces that online ideation platforms can stimulate. A two‐study approach empirically tests this framework. The first study uses a multilevel regression on a dataset of 1630 employees nested in 136 departments of a leading international science and technology company. The second study analyses how 279 employees of the same company, who submitted 678 ideas on the company's online ideation platform, continue to be motivated by the platform's inherent characteristics and capabilities and submit high‐quality ideas. The results support the core argument that online ideation platforms stimulate certain desires motivating employees to engage in innovative behaviour and ultimately submit high‐quality ideas. The detailed results offer several contributions to innovation management literature and beyond

    A new method for continuous measurements of oceanic and atmospheric N2O, CO and CO2: performance of off-axis integrated cavity output spectroscopy (OA-ICOS) coupled to non-dispersive infrared detection (NDIR)

    Get PDF
    A new system for continuous, highly-resolved oceanic and atmospheric measurements of N2O, CO and CO2 is described. The system is based upon off-axis integrated cavity output spectroscopy (OA-ICOS) and a non-dispersive infrared analyzer (NDIR) both coupled to a Weiss-type equilibrator. Performance of the combined setup was evaluated by testing its precision, accuracy, long-term stability, linearity and response time. Furthermore, the setup was tested during two oceanographic campaigns in the equatorial Atlantic Ocean in order to explore its potential for autonomous deployment onboard voluntary observing ships (VOS). Improved equilibrator response times for N2O (2.5 min) and CO (45 min) were achieved in comparison to response times from similar chamber designs used by previous studies. High stability of the OA-ICOS analyzer was demonstrated by low optimal integration times of 2 and 4 min for N2O and CO respectively, as well as detection limits of < 40 ppt and precision better than 0.3 ppb Hz−1/2. Results from a direct comparison of the method presented here and well-established discrete methods for oceanic N2O and CO2 measurements showed very good consistency. The favorable agreement between underway atmospheric N2O, CO and CO2 measurements and monthly means at Ascension Island (7.96°S 14.4°W) further suggests a reliable operation of the underway setup in the field. The potential of the system as an improved platform for measurements of trace gases was explored by using continuous N2O and CO2 data to characterize the development of the seasonal equatorial upwelling in the Atlantic Ocean during two RV/ Maria S. Merian cruises. A similar record of high-resolution CO measurements was simultaneously obtained offering for the first time the possibility of a comprehensive view on the distribution and emissions of these climate relevant gases on the area. The relatively simple underway N2O/CO/CO2 setup is suitable for long-term deployment on board of research and commercial vessels although potential sources of drift such as cavity temperature and further technical improvements towards automation still need to be addressed

    Biological productivity in the Mauritanian upwelling estimated with a triple gas approach

    Get PDF
    Due to their high biological productivity coastal upwelling regions are important for biogeochemical cycles in the ocean and for fisheries. Upwelled water is not only enriched in nutrients but also supersaturated with respect to atmospheric CO2 and N2O and undersaturated for O2. We present a novel approach to estimate carbon based net community production (NCP) using surface ocean data for CO2, O2 and N2O from three cruises to the Mauritanian upwelling region (Northwest Africa) that were conducted in different seasons. Through combination of the saturation patterns of CO2, O2 and N2O effects of air–sea gas exchange and NCP could be separated. NCP values ranges from 0.6 ± 0.1g C m−2 d−1 during times of weak upwelling to 1.6 ± 0.4 g C m−2 d−1 during strong upwelling. The estimated NCP values show a strong relationship with a wind derived upwelling index, which was used to estimate annual NCP

    Design and characterization of a flow reaction calorimeter based on FlowPlateÂź Lab and Peltier elements

    Get PDF
    Continuous manufacturing and development of flow processes depend significantly on an optimized and adapted determination of thermokinetic data of chemical reactions. Reaction calorimetry represents a prominent technique to quantify the heat release of exothermic reactions. This work presents a continuous flow calorimetric measurement system based on a commercially available hastelloy C-22 microreactor. A sensor array of Peltier elements is added to the existing microreactor setup to enable the additional functionality of flow calorimetry. The calorimeter and its additional equipment are connected to open-source soft- and hardware for data acquisition and processing as well as automated reaction screening. The reaction calorimeter can be operated in both isoperibolic and isothermal operation mode. The calorimeter's performance is investigated on the basis of model reactions, where good agreement with literature was obtained for determined reaction enthalpies

    Nitrous oxide during the onset of the Atlantic Cold Tongue

    Get PDF
    The tropical Atlantic exerts a major influence in climate variability through strong air-sea interactions. Within this region, the eastern side of the equatorial band is characterized by strong seasonality, whereby the most prominent feature is the annual development of the Atlantic Cold Tongue (ACT). This band of low sea surface temperatures (∌22-23°C) is typically associated with upwelling-driven enhancement of surface nutrient concentrations and primary production. Based on a detailed investigation of the distribution and sea-to-air fluxes of N2O in the eastern equatorial Atlantic (EEA), we show that the onset and seasonal development of the ACT can be clearly observed in surface N2O concentrations, which increase progressively as the cooling in the equatorial region proceeds during spring-summer. We observed a strong influence of the surface currents of the EEA on the N2O distribution, which allowed identifying “high” and “low” concentration regimes that were, in turn, spatially delimited by the extent of the warm eastward-flowing North Equatorial Countercurrent and the cold westward-flowing South Equatorial Current. Estimated sea-to-air fluxes of N2O from the ACT (mean 5.18±2.59 ”mol m−2 d−1) suggests that in May-July 2011 this cold-water band doubled the N2O efflux to the atmosphere with respect to the adjacent regions, highlighting its relevance for marine tropical emissions of N2O. This article is protected by copyright. All rights reserved

    Innocent strategies as presheaves and interactive equivalences for CCS

    Get PDF
    Seeking a general framework for reasoning about and comparing programming languages, we derive a new view of Milner's CCS. We construct a category E of plays, and a subcategory V of views. We argue that presheaves on V adequately represent innocent strategies, in the sense of game semantics. We then equip innocent strategies with a simple notion of interaction. This results in an interpretation of CCS. Based on this, we propose a notion of interactive equivalence for innocent strategies, which is close in spirit to Beffara's interpretation of testing equivalences in concurrency theory. In this framework we prove that the analogues of fair and must testing equivalences coincide, while they differ in the standard setting.Comment: In Proceedings ICE 2011, arXiv:1108.014
    • 

    corecore