1,011 research outputs found

    Electrophilic Aromatic Nitrosation. Isolation and X-ray Crystallography of the Metastable NO\u3csup\u3e+\u3c/sup\u3e Complex With Nitrosoarene

    Get PDF
    Isolation of the unstable 1∶1 complex of 4-nitrosoanisole with NO+PF6− allows its precise X-ray structural characterization. The charge-transfer crystal is formed via strong N⋯N coordination [the distance of 1.938(5) Å corresponding to a σ-bond order of ≈0.2] in the mean plane of the planar 4-nitrosoanisole donor. Thorough analysis of its molecular geometry in terms of valence resonance and MO schemes reveals a strong charge polarization with a local negative charge localized on the nitroso group and a local positive charge distributed over the adjacent p-methoxybenzyl moiety. Such a charge distribution accommodates the well-known passivation of nitrosoarenes to multiple nitrosation and explains the ease of demethylation of the complex. Comparison of a variety of nitroso- and nitroarene structures has shown that the nitrosoarene experiences a much stronger quinoidal distortion of the aromatic ring as compared with the latter. This indicates a stronger electron-withdrawing effect of the nitroso group relative to that of the nitro group. The weakened aromatic resonance in the nitrosoarenes could be responsible for the observed slower rate and the measurable isotope effect in electrophilic nitrosation as opposed to nitration

    The Charge-Transfer Motif in Crystal Engineering. Self-Assembly of Acentric (Diamondoid) Networks from Halide Salts and Carbon Tetrabromide as Electron-Donor/Acceptor Synthons

    Get PDF
    Unusual strength and directionality for the charge-transfer motif (established in solution) are shown to carry over into the solid state by the facile synthesis of a series of robust crystals of the [1:1] donor/acceptor complexes of carbon tetrabromide with the electron-rich halide anions (chloride, bromide, and iodide). X-ray crystallographic analyses identify the consistent formation of diamondoid networks, the dimensionality of which is dictated by the size of the tetraalkylammonium counterion. For the tetraethylammonium bromide/carbon tetrabromide dyad, the three-dimensional (diamondoid) network consists of donor (bromide) and acceptor (CBr4) nodes alternately populated to result in the effective annihilation of centers of symmetry in agreement with the sphaleroid structural subclass. Such inherently acentric networks exhibit intensive nonlinear optical properties in which the second harmonics generation in the extended charge-transfer system is augmented by the effective electronic (HOMO−LUMO) coupling between contiguous CBr4/halide centers

    Charge-Transfer Probes for Molecular Recognition \u3cem\u3evia\u3c/em\u3e Steric Hindrance in Donor-Acceptor Pairs

    Get PDF
    Molecular association of various aromatic hydrocarbons (D, including sterically hindered donors) with a representative group of diverse acceptors (A = quinone, trinitrobenzene, tetracyanoethylene, tropylium, tetranitromethane, and nitrosonium) is visually apparent in solution by the spontaneous appearance of distinctive colors. Spectral (UV−vis) analyses of the colored solutions reveal their charge-transfer origin (λCT), and they provide quantitative information of the intermolecular association in the form of the KDA and εCT values for the formation and visualization, respectively, of different [D,A] complexes. Importantly, such measurements establish charge-transfer absorption to be a sensitive analytical tool for evaluating the steric inhibition of donor−acceptor association. For example, the steric differences among various hindered aromatic donors in their association with quinone are readily dramatized in their distinctive charge-transfer (color) absorptions and verified by X-ray crystallography of the charge-transfer crystals and/or QUANTA molecular modeling calculations of optimum intermolecular separations allowed by van der Waals contacts

    Silver(I) Complexation of (Poly)aromatic Ligands. Structural Criteria for Depth Penetration into \u3cem\u3ecis\u3c/em\u3e-Stilbenoid Cavities

    Get PDF
    Silver(I) complexes with aromatic donors are thoroughly analyzed (with aid of the Cambridge Crystallographic Database) to identify the basic structural factors inherent to the bonding of an arene ligand. Most strikingly, the distance parameter d (which simply measures the normal separation of Ag from the mean aromatic plane) is singularly invariant at d = 2.41 ± 0.05 Å for all silver/arene complexes, independent of the hapticity (η1 or η2), hybridization, or multiple coordination. As such, a systematic series of stilbenoid ligands has been successfully designed to precisely modulate the penetration of silver(I) into the ligand cleft, and a multicentered poly(arene) ligand (X) designed to form a one-dimensional assembly of Ag/arene units. Simply stated, the depth penetration of silver(I) into the aromatic cavities of various cis-stilbenoid donors can be precisely predicted with a single parameter γ that measures the separation of the two cofacial aryl groups comprising the cleft. This simple geometric consideration must be taken into account in any successful design of novel (poly)aromatic ligands for silver(I) complexation to constitute new molecular architectures

    X-ray Crystal Structures and the Facile Oxidative (Au−C) Cleavage of the Dimethylaurate(I) and Tetramethylaurate(III) Homologues

    Get PDF
    Dimethylaurate(I) has been prepared as the crystalline tetrabutylammonium salt for comparison with the known tetramethylaurate(III) analogue. The linear structure of dimethylaurate(I) and the square-planar structure of tetramethylaurate(III) have both been confirmed by X-ray crystallography. One-electron oxidation of dimethylaurate(I) by either ferrocenium or arenediazonium cations produces the metastable dimethylgold(II) intermediate, which can be trapped as the paramagnetic 9,10-phenanthrenequinone (PQ) adduct. Otherwise, dimethylgold(II) is subject to rapid reductive elimination of ethane and affords metallic gold (mirror). The analogous oxidation of tetramethylaurate(III) by ferrocenium, arenediazonium, or nitrosonium cations also proceeds via electron transfer to generate the putative tetramethylgold(IV) intermediate. The highly unstable (CH3)4AuIV spontaneously undergoes homolytic cleavage to produce methyl radical and the coordinately unsaturated trimethylgold(III), which can be intercepted by added triphenylphosphine to afford Me3AuIIIPPh3

    Molecular Structures of the Metastable Charge-Transfer Complexes of Benzene (and Toluene) With Bromine as the Pre-Reactive Intermediates in Electrophilic Aromatic Bromination

    Get PDF
    Successful crystallization and X-ray crystallographic analyses of the highly metastable (1∶1) complexes of bromine with benzene and toluene establish the unique (localized) structure B that differs in notable ways from the long-accepted (delocalized) structure A. Furthermore, we demonstrate the (highly structured) charge-transfer complexes [C6H6,Br2] and [CH3C6H5,Br2] to be the pre-reactive intermediates that are converted (via an overall Br+ transfer) to the Wheland intermediates in electrophilic aromatic bromination. The role of the dative ion pairs [C6H6˙+ Br2˙−] and [CH3C6H5˙+ Br2˙−] in the rate-limiting activation processes is underscored

    Charge-Transfer Activation of Electron Donor-Acceptor Complexes and Their Role in Electrophilic Aromatic Substitution

    Get PDF
    Electron donor-acceptor or EDA complexes are common precursors leading to a variety of organic reactions, as indicated by the appearance of characteristic charge-transfer absorption bands. Structural effects of HOMO-LUMO interactions extant in donor-acceptor pairs, established by X-ray crystallography, are critical to the charge-transfer excitation of various types of weak molecular complexes in which time-resolved picosecond spectroscopy identifies the nature of charge-transfer ion pairs. Their relevance to the transition state description of electrophile/nucleophile interactions is underscored in the detailed study of electrophilic aromatic nitration

    Novel bis-arene (Sandwich) Complexes with NO\u3csup\u3e+\u3c/sup\u3e Acceptor. Isolation, X-ray Crystallography and Electronic Structure

    Get PDF
    The unusual charge-transfer complexes of various arene donors (ArH) with the nitrosonium cation (NO+) resulting from bimolecular [1 ∶ 1] associations can be extended at suitably high ArH concentrations to termolecular processes leading to the analogous [2 ∶ 1] complexes. Spectral analyses of the intense color changes accompanying the arene interaction with NO+ provide optimum conditions for the isolation of pure crystalline ternary complexes. Single crystal X-ray crystallographic determinations establish the unique sandwich structure consisting of the NO moiety interposed (parallel) between a pair of cofacial arene donors—reminiscent of the well-known transition metal sandwich complexes with aromatic ligands. The electronic structure associated with the arene binding to NO in the ternary complex is analyzed by the application of the semi-empirical LCAO molecular-orbital methodology and the Mulliken (charge-transfer) formulation of the electronic (UV–VIS–NIR) transitions. The resultant evaluation of the electronic coupling (matrix) elements HAB indicates strong donor/acceptor interactions of the frontier orbitals of the arene donor (HOMO) and nitrosonium acceptor (LUMO) that are only slightly less than those extant in the corresponding binary [1 ∶ 1] complexes

    Charge-Transfer Bonding in Metal–Arene Coordination

    Get PDF
    X-ray crystallographic structures of donor–acceptor complexes of aromatic hydrocarbons with transition metals are re-examined with the focus on the arene ligands. Thus, significant structural and electronic changes are revealed in the arene moiety due to coordination to the metal center including: (i) expansion of the aromatic six-carbon ring; (ii) endocyclic π-bond localization; (iii) distortion of the planarity (folding) of the arene ring; and (iv) shortening of the metal-arene bond distances. All structural features are characteristic of metal–arene (π- or σ-) complexes that exhibit various degrees of (metal-to-ligand) charge transfer. The concept of charge-transfer bonding not only explains the structural details but also the various facets of chemical reactivity of metal-coordinated arenes including efficient carbon-hydrogen bond activation and nucleophilic–electrophilic umpolung, both of which are critical factors in homogeneous metal catalysis

    Electron Redistribution of Aromatic Ligands in (Arene)Cr(CO)\u3csub\u3e3\u3c/sub\u3e Complexes. Structural (Bond-Length) Changes as Quantitative Measures

    Get PDF
    Arene ligands experience significant ring expansion upon coordination with chromium tricarbonyl, as established by precise X-ray crystallographic analyses of various (η6-arene)Cr(CO)3 complexes. Such changes in ligand structures result from the charge (electron) redistribution, Ar+−Cr-, upon arene coordination, since they are closely related to those found in the intermolecular 1:1 complexes of the corresponding series of arenes with nitrosonium cation (NO+). The latter are prototypical examples of charge-transfer complexes as described by Mulliken. As such, they show enhanced degrees of charge (electron) transfer that approach unity, which is confirmed by quantitative comparison with the structural changes measured in the one-electron (oxidative) transformation of electron-rich arene donors (Ar) to the cation-radicals (Ar•+). Such a charge redistribution thus readily accounts for the enhanced reactivity to nucleophilic attack of the arene ligand in various ArCr(CO)3 complexes and related transition-metal/arene analogues
    • …
    corecore