91 research outputs found

    Measuring risk with multiple eligible assets

    Full text link
    The risk of financial positions is measured by the minimum amount of capital to raise and invest in eligible portfolios of traded assets in order to meet a prescribed acceptability constraint. We investigate nondegeneracy, finiteness and continuity properties of these risk measures with respect to multiple eligible assets. Our finiteness and continuity results highlight the interplay between the acceptance set and the class of eligible portfolios. We present a simple, alternative approach to the dual representation of convex risk measures by directly applying to the acceptance set the external characterization of closed, convex sets. We prove that risk measures are nondegenerate if and only if the pricing functional admits a positive extension which is a supporting functional for the underlying acceptance set, and provide a characterization of when such extensions exist. Finally, we discuss applications to set-valued risk measures, superhedging with shortfall risk, and optimal risk sharing

    Diversification, protection of liability holders and regulatory arbitrage

    Full text link
    Any solvency regime for financial institutions should be aligned with the fundamental objectives of regulation: protecting liability holders and securing the stability of the financial system. The first objective leads to consider surplus-invariant capital adequacy tests, i.e. tests that do not depend on the surplus of a financial institution. We provide a complete characterization of closed, convex, surplus-invariant capital adequacy tests that highlights an inherent tension between surplus-invariance and the desire to give credit for diversification. The second objective leads to requiring consistency of capital adequacy tests across jurisdictions. Of particular importance in this respect are capital adequacy tests that remain invariant under a change of num\'{e}raire. We establish an intimate link between surplus- and num\'{e}raire invariant tests

    Beyond cash-additive risk measures: when changing the num\'{e}raire fails

    Full text link
    We discuss risk measures representing the minimum amount of capital a financial institution needs to raise and invest in a pre-specified eligible asset to ensure it is adequately capitalized. Most of the literature has focused on cash-additive risk measures, for which the eligible asset is a risk-free bond, on the grounds that the general case can be reduced to the cash-additive case by a change of numeraire. However, discounting does not work in all financially relevant situations, typically when the eligible asset is a defaultable bond. In this paper we fill this gap allowing for general eligible assets. We provide a variety of finiteness and continuity results for the corresponding risk measures and apply them to risk measures based on Value-at-Risk and Tail Value-at-Risk on LpL^p spaces, as well as to shortfall risk measures on Orlicz spaces. We pay special attention to the property of cash subadditivity, which has been recently proposed as an alternative to cash additivity to deal with defaultable bonds. For important examples, we provide characterizations of cash subadditivity and show that, when the eligible asset is a defaultable bond, cash subadditivity is the exception rather than the rule. Finally, we consider the situation where the eligible asset is not liquidly traded and the pricing rule is no longer linear. We establish when the resulting risk measures are quasiconvex and show that cash subadditivity is only compatible with continuous pricing rules

    Capital adequacy tests and limited liability of financial institutions

    Full text link
    The theory of acceptance sets and their associated risk measures plays a key role in the design of capital adequacy tests. The objective of this paper is to investigate, in the context of bounded financial positions, the class of surplus-invariant acceptance sets. These are characterized by the fact that acceptability does not depend on the positive part, or surplus, of a capital position. We argue that surplus invariance is a reasonable requirement from a regulatory perspective, because it focuses on the interests of liability holders of a financial institution. We provide a dual characterization of surplus-invariant, convex acceptance sets, and show that the combination of surplus invariance and coherence leads to a narrow range of capital adequacy tests, essentially limited to scenario-based tests. Finally, we emphasize the advantages of dealing with surplus-invariant acceptance sets as the primary object rather than directly with risk measures, such as loss-based and excess-invariant risk measures, which have been recently studied by Cont, Deguest, and He (2013) and by Staum (2013), respectively

    Qualitative robustness of utility-based risk measures

    Full text link
    We contribute to the literature on statistical robustness of risk measures by computing the index of qualitative robustness for risk measures based on utility functions. This problem is intimately related to finding the natural domain of finiteness and continuity of such risk measures

    Risk Measures and Efficient use of Capital

    Get PDF
    This paper is concerned with clarifying the link between risk measurement and capital efficiency. For this purpose we introduce risk measurement as the minimum cost of making a position acceptable by adding an optimal combination of multiple eligible assets. Under certain assumptions, it is shown that these risk measures have properties similar to those of coherent risk measures. The motivation for this paper was the study of a multi-currency setting where it is natural to use simultaneously a domestic and a foreign asset as investment vehicles to inject the capital necessary to make an unacceptable position acceptable. We also study what happens when one changes the unit of account from domestic to foreign currency and are led to the notion of compatibility of risk measures. In addition, we aim to clarify terminology in the fiel

    Dual representations for systemic risk measures based on acceptance sets

    Full text link
    We establish dual representations for systemic risk measures based on acceptance sets in a general setting. We deal with systemic risk measures of both "first allocate, then aggregate" and "first aggregate, then allocate" type. In both cases, we provide a detailed analysis of the corresponding systemic acceptance sets and their support functions. The same approach delivers a simple and self-contained proof of the dual representation of utility-based risk measures for univariate positions.Comment: 27 pages, no figure
    • …
    corecore