18,110 research outputs found
Discrete Hubbard-Stratonovich transformations for systems with orbital degeneracy
A discrete Hubbard-Stratonovich transformation is presented for systems with
an orbital degeneracy and a Hubbard Coulomb interaction without multiplet
effects. An exact transformation is obtained by introducing an external field
which takes values. Alternative approximate transformations are
presented, where the field takes fewer values, for instance two values
corresponding to an Ising spin.Comment: 4 pages, revtex, 1 eps figure, additional material avalable at
http://librix.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
Electron-phonon interaction and antiferromagnetic correlations
We study effects of the Coulomb repulsion on the electron-phonon interaction
(EPI) in a model of cuprates at zero and finite doping. We find that
antiferromagnetic correlations strongly enhance EPI effects on the electron
Green's function with respect to the paramagnetic correlated system, but the
net effect of the Coulomb interaction is a moderate suppression of the EPI.
Doping leads to additional suppression, due to reduced antiferromagnetic
correlations. In contrast, the Coulomb interaction strongly suppresses EPI
effects on phonons, but the suppression weakens with doping.Comment: 4 pages and 5 figure
Coarse-grained interaction potentials for polyaromatic hydrocarbons
Using Kohn-Sham density functional theory (KS-DFT), we have studied the
interaction between various polyaromatic hydrocarbon molecules. The systems
range from mono-cyclic benzene up to hexabenzocoronene (hbc). For several
conventional exchange-correlation functionals potential energy curves of
interaction of the - stacking hbc dimer are reported. It is found
that all pure local density or generalized gradient approximated functionals
yield qualitatively incorrect predictions regarding structure and interaction.
Inclusion of a non-local, atom-centered correction to the KS-Hamiltonian
enables quantitative predictions. The computed potential energy surfaces of
interaction yield parameters for a coarse-grained potential, which can be
employed to study discotic liquid-crystalline mesophases of derived
polyaromatic macromolecules
Understanding molecular representations in machine learning: The role of uniqueness and target similarity
The predictive accuracy of Machine Learning (ML) models of molecular
properties depends on the choice of the molecular representation. Based on the
postulates of quantum mechanics, we introduce a hierarchy of representations
which meet uniqueness and target similarity criteria. To systematically control
target similarity, we rely on interatomic many body expansions, as implemented
in universal force-fields, including Bonding, Angular, and higher order terms
(BA). Addition of higher order contributions systematically increases
similarity to the true potential energy and predictive accuracy of the
resulting ML models. We report numerical evidence for the performance of BAML
models trained on molecular properties pre-calculated at electron-correlated
and density functional theory level of theory for thousands of small organic
molecules. Properties studied include enthalpies and free energies of
atomization, heatcapacity, zero-point vibrational energies, dipole-moment,
polarizability, HOMO/LUMO energies and gap, ionization potential, electron
affinity, and electronic excitations. After training, BAML predicts energies or
electronic properties of out-of-sample molecules with unprecedented accuracy
and speed
Creating Ground State Molecules with Optical Feshbach Resonances in Tight Traps
We propose to create ultracold ground state molecules in an atomic
Bose-Einstein condensate by adiabatic crossing of an optical Feshbach
resonance. We envision a scheme where the laser intensity and possibly also
frequency are linearly ramped over the resonance. Our calculations for
Rb show that for sufficiently tight traps it is possible to avoid
spontaneous emission while retaining adiabaticity, and conversion efficiencies
of up to 50% can be expected
First Order Calculation of the Inclusive Cross Section pp to ZZ by Graviton Exchange in Large Extra Dimensions
We calculate the inclusive cross section of double Z-boson production within
large extra dimensions at the Large Hadron Collider (LHC). Using perturbatively
quantized gravity in the ADD model we perform a first order calculation of the
graviton mediated contribution to the pp to ZZ cross section. At low energies
(e.g. Tevatron) this additional contribution is very small, making it virtually
unobservable, for a fundamental mass scale above 2500 GeV. At LHC energies
however, the calculation indicates that the ZZ-production rate within the ADD
model should differ significantly from the Standard Model if the new
fundamental mass scale would be below 15000 GeV. A comparison with the observed
production rate at the LHC might therefore provide direct hints on the number
and structure of the extra dimensions.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.
Implementation of a Power Combining Network for a 2.45 GHz Transmitter Combining LINC and EER
A power combining network with 180N hybrid for a 2.45 GHz Transmitter Combining LINC and EER has been analyzed, built and measured. The network feeds the wasted outphasing power partly back to the power supply and therefore improves the overall power efficiency. The recycling circuit was designed and simulated with ADS. A measured peak recycling efficiency of 60% was achieved with commercial Schottky diodes at 2.45 GHz at an input power of 36 dBm.
- …