119 research outputs found

    An Experimental Study of Fan Inflow Distortion Tone Noise

    Get PDF
    The tone noise generated when a fan ingests circumferentially distorted flow was studied by an experiment conducted with the Advanced Noise Control Fan at the NASA Glenn Research Center. The inflow was distorted by inserting cylindrical rods radially into the duct. The rods were arranged in circumferentially irregular patterns in three of the five configurations tested. Rods were held in place using a mounting ring with 30 equally spaced holes placed at an axial location one rotor chordlength upstream of the fan. Acoustic pressure was measured in the inlet and exhaust duct of the fan using the Rotating Rake fan tone measurement system. Sound power levels, calculated from the measured data, were plotted as a function of circumferential mode. An analytic description of the unsteady pressure distribution at the interaction plane between the stationary rods and the fan rotor is presented in a form suitable for representing the circumferentially irregularly placed rods. Terms in the analytical description for sound power were proven to be useful in determining the dominant circumferential modes measured in the experiment and the differences in mode power level between the configurations tested. Insight gained through this work will be useful in the development of tools to compute fan inflow distortion tone noise

    Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    Get PDF
    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools

    Quiet, Efficient Fans for Spaceflight: An Overview of NASA's Technology Development Plan

    Get PDF
    A Technology Development Plan to improve the aerodynamic and acoustic performance of spaceflight fans has been submitted to NASA s Exploration Technology Development Program. The plan describes a research program intended to make broader use of the technology developed at NASA Glenn to increase the efficiency and reduce the noise of aircraft engine fans. The goal is to develop a set of well-characterized government-owned fans nominally suited for spacecraft ventilation and cooling systems. NASA s Exploration Life Support community will identify design point conditions for the fans in this study. Computational Fluid Dynamics codes will be used in the design and analysis process. The fans will be built and used in a series of tests. Data from aerodynamic and acoustic performance tests will be used to validate performance predictions. These performance maps will also be entered into a database to help spaceflight fan system developers make informed design choices. Velocity measurements downstream of fan rotor blades and stator vanes will also be collected and used for code validation. Details of the fan design, analysis, and testing will be publicly reported. With access to fan geometry and test data, the small fan industry can independently evaluate design and analysis methods and work towards improvement

    Design and Performance Calculations of a Propeller for Very High Altitude Flight

    Get PDF
    Reported here is a design study of a propeller for a vehicle capable of subsonic flight in Earth's stratosphere. All propellers presented were required to absorb 63.4 kW (85 hp) at 25.9 km (85,000 ft) while aircraft cruise velocity was maintained at Mach 0.40. To produce the final design, classic momentum and blade-element theories were combined with two and three-dimensional results from the Advanced Ducted Propfan Analysis Code (ADPAC), a numerical Navier-Stokes analysis code. The Eppler 387 airfoil was used for each of the constant section propeller designs compared. Experimental data from the Langley Low-Turbulence Pressure Tunnel was used in the strip theory design and analysis programs written. The experimental data was also used to validate ADPAC at a Reynolds numbers of 60,000 and a Mach number of 0.20. Experimental and calculated surface pressure coefficients are compared for a range of angles of attack. Since low Reynolds number transonic experimental data was unavailable, ADPAC was used to generate two-dimensional section performance predictions for Reynolds numbers of 60,000 and 100,000 and Mach numbers ranging from 0.45 to 0.75. Surface pressure coefficients are presented for selected angles of attack. in addition to the variation of lift and drag coefficients at each flow condition. A three-dimensional model of the final design was made which ADPAC used to calculated propeller performance. ADPAC performance predictions were compared with strip-theory calculations at design point. Propeller efficiency predicted by ADPAC was within 1.5% of that calculated by strip theory methods, although ADPAC predictions of thrust, power, and torque coefficients were approximately 5% lower than the strip theory results. Simplifying assumptions made in the strip theory account for the differences seen

    NASA Clean-Sheet Fans: Design, Build Analyze, Test, and Report

    Get PDF
    A suggested topic in small fan research is presented. Presentation briefly describes the scope of an effort to design, build and test a ventilation class cooling fan. Comments are included for the following categories: information (available and needed), benefits and values, concerns, variations and alternatives, and interest

    Acting on Lessons Learned: A NASA Glenn Acoustics Branch Perspective

    Get PDF
    Lessons learned from the International Space Station have indicated that early attention to acoustics will be key to achieving safer, more productive environments for new long duration missions. Fans are known to be dominant noise sources, and reducing fan noise poses challenges for fan manufacturers and systems engineers. The NASA Glenn Acoustics Branch has considered ways in which expertise and capabilities traditionally used to understand and mitigate aircraft engine noise can be used to address small fan noise issues in Exploration and Information Technology applications. Many could benefit if NASA can capture what is known about small fan aero and acoustic performance in a "Guide for the Design, Selection, and Installation of Fans for Spaceflight Applications." A draft outline for this document will be offered as a useful starting point for brainstorming ideas for the various smaller, near-term research projects that would need to be addressed first

    Validation of the Predicted Circumferential and Radial Mode Sound Power Levels in the Inlet and Exhaust Ducts of a Fan Ingesting Distorted Inflow

    Get PDF
    Fan inflow distortion tone noise has been studied computationally and experimentally. Data from two experiments in the NASA Glenn Advanced Noise Control Fan rig have been used to validate acoustic predictions. The inflow to the fan was distorted by cylindrical rods inserted radially into the inlet duct one rotor chord length upstream of the fan. The rods were arranged in both symmetric and asymmetric circumferential patterns. In-duct and farfield sound pressure level measurements were recorded. It was discovered that for positive circumferential modes, measured circumferential mode sound power levels in the exhaust duct were greater than those in the inlet duct and for negative circumferential modes, measured total circumferential mode sound power levels in the exhaust were less than those in the inlet. Predicted trends in overall sound power level were proven to be useful in identifying circumferentially asymmetric distortion patterns that reduce overall inlet distortion tone noise, as compared to symmetric arrangements of rods. Detailed comparisons between the measured and predicted radial mode sound power in the inlet and exhaust duct indicate limitations of the theory

    Investigation of a Bio-Inspired Liner Concept

    Get PDF
    Four samples of natural reeds, Phragmites australis, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz. Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested. Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds. This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz. Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept

    NASA's Bio-Inspired Acoustic Absorber Concept

    Get PDF
    Transportation noise pollutes our worlds cities, suburbs, parks, and wilderness areas. NASAs fundamental research in aviation acoustics is helping to find innovative solutions to this multifaceted problem. NASA is learning from nature to develop the next generation of quiet aircraft.The number of road vehicles and airplanes has roughly tripled since the 1960s. Transportation noise is audible in nearly all the counties across the US. Noise can damage your hearing, raise your heart rate and blood pressure, disrupt your sleep, and make communication difficult. Noise pollution threatens wildlife when it prevents animals from hearing prey, predators, and mates. Noise regulations help drive industry to develop quieter aircraft. Noise standards for aircraft have been developed by the International Civil Aviation Organization and adopted by the US Federal Aviation Administration. The US National Park Service is working with the Federal Aviation Administration to try to balance the demand for access to the parks and wilderness areas with preservation of the natural soundscape. NASA is helping by conceptualizing quieter, more efficient aircraft of the future and performing the fundamental research to make these concepts a reality someday. Recently, NASA has developed synthetic structures that can absorb sound well over a wide frequency range, and particularly below 1000 Hz, and which mimic the acoustic performance of bundles of natural reeds. We are adapting these structures to control noise on aircraft, and spacecraft. This technology might be used in many other industrial or architectural applications where acoustic absorbers have tight constraints on weight and thickness, and may be exposed to high temperatures or liquids. Information about this technology is being made available through reports and presentations available through the NASA Technical Report Server, http:ntrs.nasa.gov. Organizations who would like to collaborate with NASA or commercialize NASAs technology are encouraged to contact the NASA Glenn Technology Transfer Office, https:technology.grc.nasa.gov. The NASA Glenn Office of Education https:www.nasa.govcentersglenneducationindex.html and the NASA Glenn Virtual Interchange for Nature-Inspired Exploration https:www.grc.nasa.govvine are also helping to make research like this accessible to the public and students of all ages

    Prediction of Turbulence-Generated Noise in Unheated Jets

    Get PDF
    JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center
    corecore