450 research outputs found

    Unified description of magic numbers of metal clusters in terms of the 3-dimensional q-deformed harmonic oscillator

    Full text link
    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3)>SOq(3) symmetry are compared to experimental data for atomic clusters of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals (Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of jellium models, Woods-Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. In alkali metal clusters and noble metal clusters the 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), while in addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals, thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of several metal clusters. The Taylor expansions of angular momentum dependent potentials approximately producing the same spectrum as the 3-dimensional q-deformed harmonic oscillator are found to be similar to the Taylor expansions of the symmetrized Woods-Saxon and wine-bottle symmetrized Woods-Saxon potentials, which are known to provide successful fits of the Ekardt potentials.Comment: 23 pages including 7 table

    Detection of solar-like oscillations from Kepler photometry of the open cluster NGC 6819

    Get PDF
    Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819 -- one of four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation and the frequency of maximum oscillation power. We find that the asteroseismic parameters allow us to test cluster-membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about two orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.Comment: 5 pages, 4 figures, accepted by ApJ (Lett.

    The Star Formation History and Extended Structure of the Hercules Milky Way Satellite

    Full text link
    We present imaging of the recently discovered Hercules Milky Way satellite and its surrounding regions to study its structure, star formation history and to thoroughly search for signs of disruption. We robustly determine the distance, luminosity, size and morphology of Hercules utilizing a bootstrap approach to characterize our uncertainties. We derive a distance to Hercules of 133±6133 \pm 6 kpc via a comparison to empirical and theoretical isochrones. As previous studies have found, Hercules is very elongated, with ϵ=0.67±0.03\epsilon=0.67\pm0.03 and a half light radius of rh230r_{h} \simeq 230 pc. Using the color magnitude fitting package StarFISH, we determine that Hercules is old (>12>12 Gyr) and metal poor ([Fe/H]2.0[Fe/H]\sim-2.0), with a spread in metallicity, in agreement with previous spectroscopic work. We infer a total absolute magnitude of MV=5.3±0.4M_V=-5.3\pm0.4. Our innovative search for external Hercules structure both in the plane of the sky and along the line of sight yields some evidence that Hercules is embedded in a larger stream of stars. A clear stellar extension is seen to the Northwest with several additional candidate stellar overdensities along the position angle of Hercules out to \sim35' (\sim1.3 kpc). While the association of any of the individual stellar overdensities with Hercules is difficult to determine, we do show that the summed color magnitude diagram of all three is consistent with Hercules' stellar population. Finally, we estimate that any change in the distance to Hercules across its face is at most \sim6 kpc; and the data are consistent with Hercules being at the same distance throughout.Comment: 50 pages, 15 figures, submitted to the Astrophysical Journa

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
    corecore