3 research outputs found
LABAs and p38MAPK inhibitors reverse the corticosteroid-insensitivity of IL-8 in airway smooth muscle cells of COPD
Airway inflammation in chronic obstructive pulmonary disease (COPD) is partially insensitive/resistant to inhaled corticosteroids (ICS). ICS plus bronchodilator therapy has been discussed for COPD phenotypes with frequent exacerbations and participation of corticosteroid-sensitive type 2/eosinophilic inflammation. Neutralization of non-type 2/IL-8-associated airway inflammation by reversion of its corticosteroid-resistance might be a future strategy for other phenotypes. Human airway smooth muscle cells (HASMCs) produce corticosteroid-insensitive IL-8 in response to TNF or LPS in stable disease stages or bacteria-induced exacerbations, respectively. p38-mitogen-activated-protein-kinases (p38MAPKs) are alternative therapeutic targets. Hypothesis: long-acting-2-agonists (LABAs) reverse the corticosteroid-insensitivity of IL-8 by p38MAPK inhibition in HASMCs. Cultivated HASMCs from COPD subjects were pre-incubated with formoterol, salmeterol, fluticasone-propionate, BIRB796 (p38MAPK, -, - inhibitor), and/or SB203580 (p38MAPK and - inhibitor) before stimulation with TNF or LPS. IL-8 and MAPK-activities were measured by ELISA. Formoterol, salmeterol, and fluticasone did not or hardly reduced TNF- or LPS-induced IL-8. BIRB796 and SB203580 reduced TNF-induced IL-8. SB203580 reduced LPS-induced IL-8. Fluticasone/formoterol, fluticasone/salmeterol, and fluticasone/BIRB796, but not fluticasone/SB203580 combinations, reduced TNF-induced IL-8 stronger than single treatments. All combinations including fluticasone/SB203580 reduced LPS-induced IL-8 stronger than single treatments. TNF induced p38MAPK and - activity. LPS induced p38MAPK activity. Formoterol reduced TNF-induced p38MAPK and LPS-induced p38MAPK activity. LABAs reverse the corticosteroid-insensitivity of IL-8 in airway smooth muscles via p38MAPK in stable disease and via p38MAPK in exacerbations. Our pre-clinical data indicate a utility for also adding ICS in non-type 2 inflammatory COPD phenotypes to bronchodilator therapy. Depending on phenotype and disease stage, isoform-specific p38MAPK blockers might also reverse corticosteroid-resistance in COPD
Biomarkers for comorbidities modulate the activity of T-cells in COPD
In smoking-induced chronic obstructive pulmonary disease (COPD), various comorbidities are linked to systemic inflammation and infection-induced exacerbations. The underlying mechanisms are unclear but might provide therapeutic targets. T-cell activity is central in systemic inflammation and for infection-defense mechanisms and might be influenced by comorbidities. Hypothesis: Circulating biomarkers of comorbidities modulate the activity of T-cells of the T-helper type 1 (Th1) and/or T-cytotoxic type 1 (Tc1). T-cells in peripheral blood mononuclear cells (PBMCs) from non-smokers (NS), current smokers without COPD (S), and COPD subjects (total = 34) were ex vivo activated towards Th1/Tc1 and were then stimulated with biomarkers for metabolic and/or cardiovascular comorbidities (Brain Natriuretic Peptide, BNP; chemokine (C-C motif) ligand 18, CCL18; C-X3-C motif chemokine ligand 1, CX3CL1; interleukin-18, IL-18) or for asthma- and/or cancer-related comorbidities (CCL22; epidermal growth factor, EGF; IL-17; periostin) each at 10 or 50 ng/mL. The Th1/Tc1 activation markers interferon- (IFN), tumor necrosis factor- (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were analyzed in culture supernatants by Enzyme-Linked Immunosorbent Assay (ELISA). Ex-vivo activation induced IFN and TNF without differences between the groups but GM-CSF more in S vs. NS. At 10 ng/mL, the different biomarkers increased or reduced the T-cell activation markers without a clear trend for one direction in the different categories of comorbidities or for the different T-cell activation markers. At 50 ng/mL, there was a clear shift towards suppressive effects, particularly for the asthma- and cancer-related biomarkers and in cells of S and COPD. Comorbidities might suppress T-cell immunity in COPD. This could explain the association of comorbidities with frequent exacerbations
Olfactory receptors modulate physiological processes in human airway smooth muscle cells
Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases