11 research outputs found

    Sparse Simultaneous Signal Detection With Applications in Genomics

    Get PDF
    Studying complex diseases, such as autoimmune diseases, can lead to the detection of pleiotropic loci with otherwise small effects. Through the detection of pleiotropic loci the genetic architecture of these complex diseases can be better defined, allowing for subsequent improvements in their treatment and prevention efforts. Here, we investigate the genetic relatedness of complex diseases through the detection and quantification of simultaneous disease-associated genetic variants using genome-wide association study (GWAS) data. We propose two max-type statistics, with and without an added level of dependency on the directions of the genetic effects, that globally test whether a pair of complex diseases shares at least one disease-associated genetic variant. The proposed global tests are based on the simultaneity of complex disease-associated genetic variants, allowing for the determination of exact p-values from a permutation distribution assuming independence. While an independence assumption is often imposed on genetic variants, we propose a perturbation procedure for evaluating the statistical significance of one of the proposed global tests, preserving the inherent dependency structure among genetic variants. We extend that global test beyond the detection of genetic relatedness at identical genetic variants to the detection of genetic relatedness within dependency-defined windows across the genome. With the proposed methods we identify pairs of pediatric autoimmune diseases (pAIDs) that exhibit evidence of genetic sharing, such as Crohn\u27s disease and ulcerative colitis. We then characterize the detected genetic sharing between a pair of complex diseases through the quantification of shared disease-associated genetic variants using GWAS data. We develop a quantification measure as a function of standardized variant effect sizes, adjusted for the total number of genetic variants and varied GWAS sample size. The quantification measure acts as an estimate of the genetic correlation among shared disease-associated genetic variants. We use a bootstrapping procedure to estimate the properties of our quantification measure. In applying the developed measure to pAID GWAS we observe similar trends in relatedness among pAIDs pairs

    Associations of Tissue Tumor Mutational Burden and Mutational Status With Clinical Outcomes With Pembrolizumab Plus Chemotherapy Versus Chemotherapy For Metastatic NSCLC

    Get PDF
    INTRODUCTION: We evaluated tissue tumor mutational burden (tTMB) and mutations in STK11, KEAP1, and KRAS as biomarkers for outcomes with pembrolizumab plus platinum-based chemotherapy (pembrolizumab-combination) for NSCLC among patients in the phase 3 KEYNOTE-189 (ClinicalTrials.gov, NCT02578680; nonsquamous) and KEYNOTE-407 (ClinicalTrials.gov, NCT02775435; squamous) trials. METHODS: This retrospective exploratory analysis evaluated prevalence of high tTMB and STK11, KEAP1, and KRAS mutations in patients enrolled in KEYNOTE-189 and KEYNOTE-407 and the relationship between these potential biomarkers and clinical outcomes. tTMB and STK11, KEAP1, and KRAS mutation status was assessed using whole-exome sequencing in patients with available tumor and matched normal DNA. The clinical utility of tTMB was assessed using a prespecified cutpoint of 175 mutations/exome. RESULTS: Among patients with evaluable data from whole-exome sequencing for evaluation of tTMB (KEYNOTE-189, n = 293; KEYNOTE-407, n = 312) and matched normal DNA, no association was found between continuous tTMB score and overall survival (OS) or progression-free survival for pembrolizumab-combination (Wald test, one-sided p \u3e 0.05) or placebo-combination (Wald test, two-sided p \u3e 0.05) in patients with squamous or nonsquamous histology. Pembrolizumab-combination improved outcomes for patients with tTMB greater than or equal to 175 compared with tTMB less than 175 mutations/exome in KEYNOTE-189 (OS, hazard ratio = 0.64 [95% confidence interval (CI): 0.38‒1.07] and 0.64 [95% CI: 0.42‒0.97], respectively) and KEYNOTE-407 (OS, hazard ratio = 0.74 [95% CI: 0.50‒1.08 and 0.86 [95% CI: 0.57‒1.28], respectively) versus placebo-combination. Treatment outcomes were similar regardless of KEAP1, STK11, or KRAS mutation status. CONCLUSIONS: These findings support pembrolizumab-combination as first-line treatment in patients with metastatic NSCLC and do not suggest the utility of tTMB, STK11, KEAP1, or KRAS mutation status as a biomarker for this regimen

    Transcriptomic Determinants of Response to Pembrolizumab Monotherapy across Solid Tumor TypesDeterminants of Pembrolizumab Response in Solid Tumors

    No full text
    PurposeTo explore relationships between biological gene expression signatures and pembrolizumab response.Experimental designRNA-sequencing data on baseline tumor tissue from 1,188 patients across seven tumor types treated with pembrolizumab monotherapy in nine clinical trials were used. A total of 11 prespecified gene expression signatures [18-gene T-cell-inflamed gene expression profile (TcellinfGEP), angiogenesis, hypoxia, glycolysis, proliferation, MYC, RAS, granulocytic myeloid-derived suppressor cell (gMDSC), monocytic myeloid-derived suppressor cell (mMDSC), stroma/epithelial-to-mesenchymal transition (EMT)/TGFβ, and WNT] were evaluated for their relationship to objective response rate (per RECIST, version 1.1). Logistic regression analysis of response for consensus signatures was adjusted for tumor type, Eastern Cooperative Oncology Group performance status, and TcellinfGEP, an approach equivalent to evaluating the association between response and the residuals of consensus signatures after detrending them for their relationship with the TcellinfGEP (previously identified as a determinant of pembrolizumab response) and tumor type. Testing of the 10 prespecified non-TcellinfGEP consensus signatures for negative association [except proliferation (hypothesized positive association)] with response was adjusted for multiplicity.ResultsCovariance patterns of the 11 signatures (including TcellinfGEP) identified in Merck-Moffitt and The Cancer Genome Atlas datasets showed highly concordant coexpression patterns in the RNA-sequencing data from pembrolizumab trials. TcellinfGEP was positively associated with response; signatures for angiogenesis, mMDSC, and stroma/EMT/TGFβ were negatively associated with response to pembrolizumab monotherapy.ConclusionsThese findings suggest that features beyond IFNγ-related T-cell inflammation may be relevant to anti-programmed death 1 monotherapy response and may define other axes of tumor biology as candidates for pembrolizumab combinations. See related commentary by Cho et al., p. 1479

    Association between gene expression signatures and clinical outcomes of pembrolizumab versus paclitaxel in advanced gastric cancer: exploratory analysis from the randomized, controlled, phase III KEYNOTE-061 trial

    No full text
    Background In the randomized, controlled, phase III KEYNOTE-061 trial, second-line pembrolizumab did not significantly prolong overall survival (OS) versus paclitaxel in patients with PD-L1-positive (combined positive score ≥1) advanced gastric/gastroesophageal junction (G/GEJ) cancer but did elicit a longer duration of response and offered a favorable safety profile. This prespecified exploratory analysis was conducted to evaluate associations between tumor gene expression signatures and clinical outcomes in the phase III KEYNOTE-061 trial.Methods Using RNA sequencing data obtained from formalin-fixed, paraffin-embedded baseline tumor tissue samples, we evaluated the 18-gene T-cell-inflamed gene expression profile (TcellinfGEP) and 10 non-TcellinfGEP signatures (angiogenesis, glycolysis, granulocytic myeloid-derived suppressor cell (gMDSC), hypoxia, monocytic MDSC (mMDSC), MYC, proliferation, RAS, stroma/epithelial-to-mesenchymal transition/transforming growth factor-β, WNT). The association between each signature on a continuous scale and outcomes was analyzed using logistic (objective response rate (ORR)) and Cox proportional hazards regression (progression-free survival (PFS) and OS). One-sided (pembrolizumab) and two-sided (paclitaxel) p values were calculated for TcellinfGEP (prespecified α=0.05) and the 10 non-TcellinfGEP signatures (multiplicity-adjusted; prespecified α=0.10).Results RNA sequencing data were available for 137 patients in each treatment group. TcellinfGEP was positively associated with ORR (p=0.041) and PFS (p=0.026) for pembrolizumab but not paclitaxel (p>0.05). The TcellinfGEP-adjusted mMDSC signature was negatively associated with ORR (p=0.077), PFS (p=0.057), and OS (p=0.033) for pembrolizumab, while the TcellinfGEP-adjusted glycolysis (p=0.018), MYC (p=0.057), and proliferation (p=0.002) signatures were negatively associated with OS for paclitaxel.Conclusions This exploratory analysis of tumor TcellinfGEP showed associations with ORR and PFS for pembrolizumab but not for paclitaxel. TcellinfGEP-adjusted mMDSC signature was negatively associated with ORR, PFS, and OS for pembrolizumab but not paclitaxel. These data suggest myeloid-driven suppression may play a role in resistance to PD-1 inhibition in G/GEJ cancer and support a strategy of considering immunotherapy combinations which target this myeloid axis.Trial registration number NCT02370498

    Association of Tumor Mutational Burden with Efficacy of Pembrolizumab±Chemotherapy as First-Line Therapy for Gastric Cancer in the Phase III KEYNOTE-062 Study

    No full text
    © 2022 American Association for Cancer Research.Purpose: This prespecified exploratory analysis evaluated the association between tumor mutational burden (TMB) status and outcomes of first-line pembrolizumab-chemotherapy versus chemotherapy in KEYNOTE-062. Patients and Methods: In patients with advanced gastric cancer and evaluable TMB data, we evaluated the association between TMB (continuous variable; square root scale) assessed with FoundationOne CDx and clinical outcomes [objective response rate (ORR), progression-free survival (PFS), and overall survival (OS)] using logistic (ORR) and Cox proportional hazards (PFS, OS) regression models. Clinical utility of TMB was assessed using the prespecified cutoff of 10 mut/Mb. Results: TMB data were available for 306 of 763 patients (40.1%; pembrolizumab, 107; pembrolizumab+chemotherapy, 100; chemotherapy, 99). TMB was significantly associated with clinical outcomes in patients treated with pembrolizumab and pembrolizumab+chemotherapy (ORR, PFS, and OS; all P < 0.05) but not with chemotherapy (all P > 0.05). The overall prevalence of TMB ≥10 mut/Mb was 16% across treatment groups; 44% of patients who had TMB ≥10 mut/Mb had high microsatellite instability (MSI-H) tumors. Improved clinical outcomes (ORR, PFS, and OS) were observed in pembrolizumab-treated patients (pembrolizumab monotherapy and pembrolizumab+ chemotherapy) with TMB ≥10 mut/Mb. When the analysis was limited to the non-MSI-H subgroup, both the positive association between clinical outcomes with pembrolizumab or pembrolizumab+chemotherapy and TMB as a continuous variable and the clinical utility of pembrolizumab (with or without chemotherapy) versus chemotherapy by TMB cutoff were attenuated. Conclusions: This exploratory analysis of KEYNOTE-062 suggests an association between TMB and clinical efficacy with firstline pembrolizumab-based therapy in patients with advanced gastric/ gastroesophageal junction adenocarcinoma. However, after the exclusion of patients with MSI-H tumors, the clinical utility of TMB was attenuated.N

    Five Year Survival Update From KEYNOTE-010: Pembrolizumab Versus Docetaxel for Previously Treated, Programmed Death-Ligand 1-Positive Advanced NSCLC

    Get PDF
    Introduction: In the KEYNOTE-010 study, pembrolizumab improved overall survival (OS) versus docetaxel in patients with previously treated, advanced NSCLC with programmed death-ligand 1 (PD-L1) tumor proportion score (TPS) >= 50% and >= 1%. We report 5-year efficacy and safety follow-up for the KEYNOTE-010 study. Methods: Patients were randomized to pembrolizumab 2 mg/kg or 10 mg/kg once every 3 weeks or docetaxel 75 mg/m(2) once every 3 weeks for up to 35 cycles (2 y). Patients who completed pembrolizumab treatment and subsequently had recurrence could receive second-course pembrolizumab for up to 17 cycles (1 y). Pembrolizumab doses were pooled in this analysis. Results: A total of 1034 patients were randomized (pembrolizumab, n = 691; docetaxel, n = 343). Median study follow-up was 67.4 months (range: 60.0-77.9). The hazard ratio (95% confidence interval) for OS was 0.55 (0.44. 0.69) for patients with PD-L1 TPS >= 50% and 0.70 (0.61. 0.80) with PD-L1 TPS >= 1%. The 5-year OS rates for pembrolizumab versus docetaxel were 25.0% versus 8.2% in patients with PD-L1 TPS >= 50% and 15.6% versus 6.5% with PD-L1 TPS >= 1%. Among 79 patients who completed 35 cycles/2 years of pembrolizumab, the OS rate 3 years after completion (similar to 5 y from randomization) was 83.0%. A total of 21 patients received second-course pembrolizumab; 11 (52.4%) had an objective response after starting the second course and 15 (71.4%) were alive at data cutoff. Exploratory biomarker analysis revealed that higher tissue tumor mutational burden (>= 175 mutations per exome) was associated with improved outcomes with pembrolizumab. Conclusions: Pembrolizumab continued to provide long-term benefit than docetaxel in patients with previously treated advanced NSCLC with PD-L1 TPS >= 50% and >= 1%. Our findings confirm pembrolizumab as a standard-of-care treatment in the second-line or later setting. (C) 2021 Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer.
    corecore