74 research outputs found

    Association Analyses of Variants in the DIO2 Gene with Early-Onset Type 2 Diabetes Mellitus in Pima Indians

    Get PDF
    Background: The type 2 deiodinase gene (DIO2) encodes a deiodinase that converts the thyroid prohormone, thyroxine, to the biologically active triiodothyronine. Thyroid hormones regulate energy balance and may also influence glucose metabolism. Therefore, we hypothesized that variations in DIO2 could contribute to obesity or type 2 diabetes mellitus (T2DM) in Pima Indians. Methods: Sequencing of the DIO2 gene in DNA from 83 Pima Indians identified 12 single-nucleotide polymorphisms (SNPs). Several of these SNPs were in perfect genotypic concordance among the 83 samples that were sequenced, and all 12 could be divided into five linkage disequilibrium groups. One representative SNP from each group (Thr92Ala, rs225011, rs225015, rs6574549, and a rare 5¢ flanking SNP) was selected for further genotyping for association analyses. In this study, the five selected variants in DIO2, as described above, were genotyped in three groups of Pima Indians: (i) a case (n = 150)/control (n = 150) group for early-onset T2DM (onset age \u3c 25 years); (ii) a case (n = 362)/control (n = 127) group for obesity; (iii) a large (n = 1,311, cases n = 810/ controls n = 501) family-based group, of which 256 nondiabetic subjects had undergone detailed metabolic phenotyping. Results: The Thr92Ala variant common in Pima Indians, rs225011, and rs225015 were modestly associated with early-onset T2DM ( p = 0.01–0.04) in the case–control study, but were not associated with obesity in the obesity case–control study, nor associated with T2DM (at any age) or body–mass index (BMI; as a quantitative trait) in the family-based analysis. Thr92Ala, rs225011, rs225015, and rs6574549 were also nominally associated with hepatic glucose output ( p = 0.02). rs6574549 was associated with fasting insulin ( p = 0.02), insulin action ( p = 0.04), and energy expenditure ( p = 0.02). None of these nominal associations remained statistically significant after corrections for multiple testing. Conclusions: We propose that variation in DIO2 may have a subtle role in altering metabolic processes that lead to early-onset T2DM, but this gene does not have a large impact on T2DM at older ages, nor does DIO2 influence BMI in the Pima Indian population. Introductio

    Analysis of SLC16A11 Variants in 12,811 American Indians: Genotype-Obesity Interaction for Type 2 Diabetes and an Association With RNASEK Expression

    Get PDF
    Genetic variants in SLC16A11 were recently reported to be associated with type 2 diabetes in Mexican and other Latin American populations. The diabetes risk haplotype had a frequency of 50% in Native Americans from Mexico but was rare in Europeans and Africans. In the current study, we analyzed SLC16A11 in 12,811 North American Indians and found that the diabetes risk haplotype, tagged by the rs75493593 A allele, was nominally associated with type 2 diabetes (P = 0.001, odds ratio 1.11). However, there was a strong interaction with BMI (P = 5.1 × 10(-7)) such that the diabetes association was stronger in leaner individuals. rs75493593 was also strongly associated with BMI in individuals with type 2 diabetes (P = 3.4 × 10(-15)) but not in individuals without diabetes (P = 0.77). Longitudinal analyses suggest that this is due, in part, to an association of the A allele with greater weight loss following diabetes onset (P = 0.02). Analyses of global gene expression data from adipose tissue, skeletal muscle, and whole blood provide evidence that rs75493593 is associated with expression of the nearby RNASEK gene, suggesting that RNASEK expression may mediate the effect of genotype on diabetes

    The Arg59Trp variant in ANGPTL8 (betatrophin) is associated with total and HDL-cholesterol in American Indians and Mexican Americans and differentially affects cleavage of ANGPTL3

    Get PDF
    We previously identified a locus linked to total cholesterol (TC) concentration in Pima Indians on chromosome 19p. To characterize this locus, we genotyped \u3e2000 SNPs in 1838 Pimas and assessed association with log(TC). We observed evidence for association with log(TC) with rs2278426 (3.5% decrease/copy of the T allele; P=5.045×10(-6)) in the ANGPTL8 (angiopoietin-like 8) gene. We replicated this association in 2413 participants of the San Antonio Mexican American Family Study (SAMAFS: 2.0% decrease per copy of the T allele; P=0.005842). In a meta-analysis of the combined data, we found the strongest estimated effect with rs2278426 (P=2.563×10(-7)). The variant T allele at rs2278426 predicts an Arg59Trp substitution and has previously been associated with LDL-C and HDL-C. In Pimas and SAMAFS participants, the T allele of rs2278426 was associated with reduced HDL-C levels (P=0.000741 and 0.00002, respectively), and the combined estimated effect for the two cohorts was -3.8% (P=8.526×10(-8)). ANGPTL8 transcript and protein levels increased in response to both glucose and insulin. The variant allele was associated with increased levels of cleaved ANGPTL3. We conclude that individuals with the variant allele may have lower TC and HDL-C levels due to increased activation of ANGPTL3 by ANGPTL8

    Identity-by-Descent Mapping Identifies Major Locus for Serum Triglycerides in Amerindians Largely Explained by an APOC3 Founder Mutation

    Get PDF
    Background—Identity-by-descent (IBD) mapping using empirical estimates of IBD allele sharing may be useful for studies of complex traits in founder populations, where hidden relationships may augment the inherent genetic information that can be used for localization. Methods and Results—Through IBD mapping, using ~400,000 SNPs, of serum lipid profiles we identified a major linkage signal for triglycerides (TG) in 1,007 Pima Indians (LOD=9.23, p=3.5×10−11 on chromosome 11q). In subsequent fine-mapping and replication association studies in ~7,500 Amerindians, we determined that this signal reflects effects of a loss-of-function Ala43Thr substitution in APOC3 (rs147210663) and 3 established functional SNPs in APOA5. The association with rs147210663 was particularly strong; each copy of the Thr allele conferred 42% lower TG (β=−0.92±0.059 SD unit, p=9.6×10−55 in 4,668 Pimas and 2,793 Southwest Amerindians combined). The Thr allele is extremely rare in most global populations, but has a frequency of 2.5% in Pimas. We further demonstrated that 3 APOA5 SNPs with established functional impact could explain the association with the most well-replicated SNP (rs964184) for TG identified by genome-wide association studies (GWAS). Collectively these 4 SNPs account for 6.9% of variation in TG in Pimas (and 4.1% in Southwest Amerindians), and their inclusion in the original linkage model reduced the linkage signal to virtually null. Conclusions—APOC3/APOA5 constitutes a major locus for serum triglycerides in Amerindians, especially the Pimas, and these results provide an empirical example for the concept that population-based linkage analysis is a useful strategy to identify complex trait variants

    Association of protein function-altering variants with cardiometabolic traits:the strong heart study

    Get PDF
    Clinical and biomarker phenotypic associations for carriers of protein function-altering variants may help to elucidate gene function and health effects in populations. We genotyped 1127 Strong Heart Family Study participants for protein function-altering single nucleotide variants (SNV) and indels selected from a low coverage whole exome sequencing of American Indians. We tested the association of each SNV/indel with 35 cardiometabolic traits. Among 1206 variants (average minor allele count = 20, range of 1 to 1064), similar to 43% were not present in publicly available repositories. We identified seven SNV-trait significant associations including a missense SNV at ABCA10 (rs779392624, p= 8 x 10(-9)) associated with fasting triglycerides, which gene product is involved in macrophage lipid homeostasis. Among non-diabetic individuals, missense SNVs at four genes were associated with fasting insulin adjusted for BMI (PHIL, chr6:79,650,711, p= 2.1 x 10(-6); TRPM3, rs760461668, p= 5 x10(-8); SPTY2D1, rs756851199, p= 1.6 x 10(-8); and TSPO, rs566547284, p= 2.4 x 10(-6)). PHIL encoded protein is involved in pancreatic beta-cell proliferation and survival, and TRPM3 protein mediates calcium signaling in pancreatic beta-cells in response to glucose. A genetic risk score combining increasing insulin risk alleles of these four genes was associated with 53% (95% confidence interval 1.09, 2.15) increased odds of incident diabetes and 83% (95% confidence interval 1.35, 2.48) increased odds of impaired fasting glucose at follow-up. Our study uncovered novel gene-trait associations through the study of protein-coding variants and demonstrates the advantages of association screenings targeting diverse and high-risk populations to study variants absent in publicly available repositories

    Trans-ancestral genome-wide association study of longitudinal pubertal height growth and shared heritability with adult health outcomes

    Get PDF
    Background: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. Results: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. Conclusion: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single “optimal” pubertal growth pattern

    An ACACB variant implicated in diabetic nephropathy associates with body mass index and gene expression in obese subjects

    Get PDF
    Acetyl coenzyme A carboxylase B gene (ACACB) single nucleotide polymorphism (SNP) rs2268388 is reproducibly associated with type 2 diabetes (T2DM)-associated nephropathy (DN). ACACB knock-out mice are also protected from obesity. This study assessed relationships between rs2268388, body mass index (BMI) and gene expression in multiple populations, with and without T2DM. Among subjects without T2DM, rs2268388 DN risk allele (T) associated with higher BMI in Pima Indian children (n = 2021; p-additive = 0.029) and African Americans (AAs) (n = 177; p-additive = 0.05), with a trend in European Americans (EAs) (n = 512; p-additive = 0.09), but not Germans (n = 858; p-additive = 0.765). Association with BMI was seen in a meta-analysis including all non-T2DM subjects (n = 3568; p-additive = 0.02). Among subjects with T2DM, rs2268388 was not associated with BMI in Japanese (n = 2912) or EAs (n = 1149); however, the T allele associated with higher BMI in the subset with BMI≥30 kg/m(2) (n = 568 EAs; p-additive = 0.049, n = 196 Japanese; p-additive = 0.049). Association with BMI was strengthened in a T2DM meta-analysis that included an additional 756 AAs (p-additive = 0.080) and 48 Hong Kong Chinese (p-additive = 0.81) with BMI≥30 kg/m(2) (n = 1575; p-additive = 0.0033). The effect of rs2268388 on gene expression revealed that the T risk allele associated with higher ACACB messenger levels in adipose tissue (41 EAs and 20 AAs with BMI\u3e30 kg/m(2); p-additive = 0.018) and ACACB protein levels in the liver tissue (mixed model p-additive = 0.03, in 25 EA bariatric surgery patients with BMI\u3e30 kg/m(2) for 75 exams). The T allele also associated with higher hepatic triglyceride levels. These data support a role for ACACB in obesity and potential roles for altered lipid metabolism in susceptibility to DN

    The transcriptional landscape of age in human peripheral blood

    Get PDF
    Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts.Peer reviewe

    Assessment of Parent-of-Origin Effects in Linkage Analysis of Quantitative Traits

    Get PDF
    Methods are presented for incorporation of parent-of-origin effects into linkage analysis of quantitative traits. The estimated proportion of marker alleles shared identical by descent is first partitioned into a component derived from the mother and a component derived from the father. These parent-specific estimates of allele sharing are used in variance-components or Haseman-Elston methods of linkage analysis so that the effect of the quantitative-trait locus carried on the maternally derived chromosome is potentially different from the effect of the locus on the paternally derived chromosome. Statistics for linkage between trait and marker loci derived from either or both parents are then calculated, as are statistics for testing whether the effect of the maternally derived locus is equal to that of the paternally derived locus. Analyses of data simulated for 956 siblings from 263 nuclear families who had participated in a linkage study revealed that type I error rates for these statistics were generally similar to nominal values. Power to detect an imprinted locus was substantially increased when analyzed with a model allowing for parent-of-origin effects, compared with analyses that assumed equal effects; for example, for an imprinted locus accounting for 30% of the phenotypic variance, the expected LOD score was 4.5 when parent-of-origin effects were incorporated into the analysis, compared with 3.1 when these effects were ignored. The ability to include parent-of-origin effects within linkage analysis of quantitative traits will facilitate genetic dissection of complex traits
    corecore