30 research outputs found
Identification and Functional Characterization of Novel Phosphorylation Sites in TAK1-Binding Protein (TAB) 1
TAB1 was defined as a regulatory subunit of the protein kinase TAK1, which functions upstream in the pathways activated by interleukin (IL)-1, tumor necrosis factor (TNF), toll-like receptors (TLRs) and stressors. However, TAB1 also functions in the p38 MAPK pathway downstream of TAK1. We identified amino acids (aa) 452/453 and 456/457 of TAB1 as novel sites phosphorylated by TAK1 as well as by p38 MAPK in intact cells as well as in vitro. Serines 452/453 and 456/457 were phosphorylated upon phosphatase blockade by calyculin A, or in response to IL-1 or translational stressors such as anisomycin and sorbitol. Deletion or phospho-mimetic mutations of aa 452–457 of TAB1 retain TAB1 and p38 MAPK in the cytoplasm. The TAB1 mutant lacking aa 452–457 decreases TAB1-dependent phosphorylation of p38 MAPK. It also enhances TAB1-dependent CCL5 secretion in response to IL-1 and increases activity of a post-transcriptional reporter gene, which contains the CCL5 3′ untranslated region. These data suggest a complex role of aa 452–457 of TAB1 in controlling p38 MAPK activity and subcellular localization and implicate these residues in TAK1- or p38 MAPK-dependent post-transcriptional control of gene expression
Differential Cell Sensitivity between OTA and LPS upon Releasing TNF-α
The release of tumor necrosis factor α (TNF-α) by ochratoxin A (OTA) was studied in various macrophage and non-macrophage cell lines and compared with E. coli lipopolysaccharide (LPS) as a standard TNF-α release agent. Cells were exposed either to 0, 2.5 or 12.5 µmol/L OTA, or to 0.1 µg/mL LPS, for up to 24 h. OTA at 2.5 µmol/L and LPS at 0.1 µg/mL were not toxic to the tested cells as indicated by viability markers. TNF-α was detected in the incubated cell medium of rat Kupffer cells, peritoneal rat macrophages, and the mouse monocyte macrophage cell line J774A.1: TNF-α concentrations were 1,000 pg/mL, 1,560 pg/mL, and 650 pg/mL, respectively, for 2.5 µmol/L OTA exposure and 3,000 pg/mL, 2,600 pg/mL, and 2,115 pg/mL, respectively, for LPS exposure. Rat liver sinusoidal endothelial cells, rat hepatocytes, human HepG2 cells, and mouse L929 cells lacked any cytokine response to OTA, but showed a significant release of TNF-α after LPS exposure, with the exception of HepG2 cells. In non-responsive cell lines, OTA lacked both any activation of NF-κB or the translocation of activated NF-κB to the cell nucleus, i.e., in mouse L929 cells. In J774A.1 cells, OTA mediated TNF-α release via the pRaf/MEK 1/2-NF-κB and p38-NF-κB pathways, whereas LPS used pRaf/MEK 1/2–NF-κB, but not p38-NF-κB pathways. In contrast, in L929 cells, LPS used other pathways to activate NF-κB. Our data indicate that only macrophages and macrophage derived cells respond to OTA and are considered as sources for TNF-α release upon OTA exposure
c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies
JNK-mediated phosphorylation of the mRNA-decapping protein DCP1a disrupts P body structure, mRNA stability, and gene expression in response to stress and inflammatory stimuli
Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner
How cytokine-driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)-1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF-κB at regions that are highly enriched for inflammatory disease-relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL-1α-inducible IL8 and CXCL1-3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL-1α/TAK1-inducible manner. Microdeletions of p65-binding sites in either of the two enhancers impair NF-κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher-order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 “master” enhancer in the regulation of sustained IL-1α signaling, as well as for IL-8 and IL-6 secretion. CRISPR-guided transactivation of the IL8 locus or cross-TAD regulation by TNFα-responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF-κB
A protocol for laser microdissection (LMD) followed by transcriptome analysis of plant reproductive tissue in phylogenetically distant
Background: Plant development is controlled by the action of many, often connected gene regulatory networks. Differential gene expression controlled by internal and external cues is a major driver of growth and time specific differentiation in plants. Transcriptome analysis is the state-of-the-art method to detect spatio-temporal changes in gene expression during development. Monitoring changes in gene expression at early stages or in small plant organs and tissues requires an accurate technique of tissue isolation, which subsequently results in RNA of sufficient quality and quantity. Laser-microdissection enables such accurate dissection and collection of desired tissue from sectioned material at a microscopic level for RNA extraction and subsequent downstream analyses, such as transcriptome, proteome, genome or miRNA. Results: A protocol for laser-microdissection, RNA extraction and RNA-seq was optimized and verified for three distant angiosperm species: Arabidopsis thaliana (Brassicaceae), Oryza sativa (Poaceae) and Eschscholzia californica (Papaveraceae). Previously published protocols were improved in processing speed by reducing the vacuum intensity and incubation time during tissue fixation and incubation time and cryoprotection and by applying adhesive tape. The sample preparation and sectioning of complex and heterogenous flowers produced adequate histological quality and subsequent RNA extraction from micro-dissected gynoecia reliably generated samples of sufficient quality and quantity on all species for RNA-seq. Expression analysis of growth stage specific A. thaliana and O. sativa transcriptomes showed distinct patterns of expression of chromatin remodelers on different time points of gynoecium morphogenesis from the initiation of development to post-meiotic stages. Conclusion: Here we describe a protocol for plant tissue preparation, cryoprotection, cryo-sectioning, laser microdissection and RNA sample preparation for Illumina sequencing of complex plant organs from three phyletically distant plant species. We are confident that this approach is widely applicable to other plant species to enable transcriptome analysis with high spatial resolution in non-model plant species. The protocol is rapid, produces high quality sections of complex organs and results in RNA of adequate quality well suited for RNA-seq approaches. We provide detailed description of each stage of sample preparation with the quality and quantity measurements as well as an analysis of generated transcriptomes