8 research outputs found
Lymphknoten Heterogenität ist durch unkonventionelle T Zellen reguliert, welche in funktionellen Einheiten organisiert sind
The immune system has the function to defend organisms against a variety of pathogens
and malignancies. To perform this task, different parts of the immune system work in concert and
influence each other to balance and optimize its functional output upon activation. One aspect that
determines this output and ultimately the outcome of the infection is the tissue context in which the
activation takes place. As such, it has been shown that dendritic cells can relay information from
the infection sites to draining lymph nodes. This way, the ensuing adaptive immune response that
is initiated by dendritic cells, is optimized to the tissue context in which the infection needs to be
cleared.
Here, we set out to investigate whether unconventional T cells (UTC) could have a similar
function in directing a site-specific immune response. Using flow cytometry, scRNA-sequencing
and functional assays we demonstrated that UTC indeed drive a characteristic immune response
in lymph nodes depending on the drained tissues. This function of UTC was directly connected to
their lymphatic migration from tissues to draining lymph nodes reminiscent of dendritic cells.
Besides these tissue-derived UTC that migrated via the lymph, we further identified circulatory UTC
that migrated between lymph nodes via the blood. Functional characterization of UTC following
bacterial infection in wt and single TCR-based lineage deficient mice that lacked subgroups of UTC
further revealed that both tissue-derived and circulatory UTC were organized in functional units
independent of their TCR-based lineage-affiliation (MAIT, NKT, gd T cells). Specific reporter mouse
models revealed that UTC within the same functional unit were also located in the same
microanatomical areas of lymph nodes, further supporting their shared function. Our data show that
the numbers and function of UTC were compensated in single TCR-based lineage deficient mice
that lacked subgroups of UTC.
Taken together, our results characterize the transcriptional landscape and migrational
behavior of UTC in different lymph nodes. UTC contribute to a functional heterogeneity of lymph
nodes, which in turn guides optimized, site-specific immune responses. Additionally, we propose
the classification of UTC within functional units independent of their TCR-based lineage. These
results add significantly to our understanding of UTC biology and have direct clinical implications.
We hope that our data will guide targeted vaccination approaches and cell-based therapies to
optimize immune responses against pathogens and cancer.Das Immunsystem verteidigt den Host gegen eine Vielzahl an Pathogenen und malignen Transformationen. Um diese Aufgabe effizient zu erfüllen, arbeiten verschiedene Bereiche des Immunsystems zusammen, um bei Aktivierung optimal zu funktionieren. Einen potenziellen Einfluss auf die Immunantwort hat der Kontext, in dem die Aktivierung stattfindet. Es konnte gezeigt werden, dass dendritische Zellen Informationen von der Infektionsstelle im Gewebe zum drainierenden Lymphknoten transportieren. Auf diese Weise kann die adaptive Immunantwort, initiiert von den dendritischen Zellen, auf die Situation im Gewebe optimiert werden, um die Infektion zu bekämpfen.
In dieser Arbeit wollten wir die Rolle der unkonventionellen T Zellen (UTC) in der Generierung der Ortsspezifischen Immunantwort untersuchen. Unter Verwendung von Durchflusszytometry, Einzelzell-RNS Sequenzierung und funktioneller Analyse Methoden, konnten wir zeigen, dass diese Zellen eine Lymphknoten-spezifische Immunantwort generieren, die vom drainierenden Gewebe abhängt. Diese Eigenschaft der UTC war direkt mit ihrer Fähigkeit geknüpft, wie dendritische Zellen vom Gewebe zu den Lymphknoten zu wandern. Neben dieser Gewebe-abstammenden UTC Population konnten wir auch eine im Blut zirkulierende Gruppe identifizieren. Während der Analyse dieser Zellen in bakterieller Infektion von wild typ und einzelnen TCR Identität-defizienten Mäusen stellte sich heraus, dass sie als funktionelle Einheiten agieren, unabhängig von ihrer TCR-basierten Identität (MAIT, NKT, T Zellen). Mit spezifischen Reporter Maus Linien konnten wir zeigen, dass sich UTC in spezifischen mikroanatomischen Nischen in Lymphknoten befinden, was eine überlappende Funktion andeutet. Außerdem war die Anzahl und Funktion der UTC kompensiert in einzelnen TCR Identität-defizienten Mäusen.
Zusammenfasst charakterisieren unsere Ergebnisse das Transkriptionsprofil und Migrations-verhalten der UTC in verschiedenen Lymphknoten. Wir zeigen, dass UTC zum Teil für die Lymphknoten spezifische Unterschiede verantwortlich sind und damit eine spezifische, optimierte Immunantwort steuern. Diese Ergebnisse erweitern unser Wissen über die Biologie von UTC signifikant und haben direkte klinische Relevanz. Auf der Basis dieses Wissens können neue Impfansätze oder Zelltherapie Strategien genauer designend werden
A multifunctional mouse model to study the role of Samd3
The capacity to develop immunological memory is a hallmark of the adaptive immune system. To investigate the role of Samd3 for cellular immune responses and memory development, we generated a conditional knock-out mouse including a fluorescent reporter and a huDTR cassette for conditional depletion of Samd3-expressing cells. Samd3 expression was observed in NK cells and CD8 T cells, which are known for their specific function against intracellular pathogens like viruses. After acute viral infections, Samd3 expression was enriched within memory precursor cells and the frequency of Samd3-expressing cells increased during the progression into the memory phase. Similarly, during chronic viral infections, Samd3 expression was predominantly detected within precursors of exhausted CD8 T cells that are critical for viral control. At the functional level however, Samd3-deficient CD8 T cells were not compromised in the context of acute infection with Vaccinia virus or chronic infection with Lymphocytic choriomeningitis virus. Taken together, we describe a novel multifunctional mouse model to study the role of Samd3 and Samd3-expressing cells. We found that Samd3 is specifically expressed in NK cells, memory CD8 T cells, and precursor exhausted T cells during viral infections, while the molecular function of this enigmatic gene remains further unresolved
Recommended from our members
Dermal TRPV1 innervations engage a macrophage- and fibroblast-containing pathway to activate hair growth in mice
Pain, detected by nociceptors, is an integral part of injury, yet whether and how it can impact tissue physiology and recovery remain understudied. Here, we applied chemogenetics in mice to locally activate dermal TRPV1 innervations in naive skin and found that it triggered new regenerative cycling by dormant hair follicles (HFs). This was preceded by rapid apoptosis of dermal macrophages, mediated by the neuropeptide calcitonin gene-related peptide (CGRP). TRPV1 activation also triggered a macrophage-dependent induction of osteopontin (Spp1)-expressing dermal fibroblasts. The neuropeptide CGRP and the extracellular matrix protein Spp1 were required for the nociceptor-triggered hair growth. Finally, we showed that epidermal abrasion injury induced Spp1-expressing dermal fibroblasts and hair growth via a TRPV1 neuron and CGRP-dependent mechanism. Collectively, these data demonstrated a role for TRPV1 nociceptors in orchestrating a macrophage and fibroblast-supported mechanism to promote hair growth and enabling the efficient restoration of this mechano- and thermo-protective barrier after wounding
Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks
Highlights d Resident and migratory cDC1s generate distinct networks in LNs d The LN medulla is a niche for DC precursor homing and differentiation d Prtn3-based fate tracking reveals differentiation trajectories of preDCs in LN
Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming
T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy
In situ maturation and tissue adaptation of type 2 innate lymphoid cell progenitors
International audienceInnate lymphoid cells (ILCs) are generated early during ontogeny and persist predominantly as tissue-resident cells. Here, we examined how ILCs are maintained and renewed within tissues. We generated a single cell atlas of lung ILC2s and found that Il18r1+ ILCs comprise circulating and tissue-resident ILC progenitors (ILCP) and effector-cells with heterogeneous expression of the transcription factors Tcf7 and Zbtb16, and CD103. Our analyses revealed a continuous differentiation trajectory from Il18r1+ ST2− ILCPs to Il18r− ST2+ ILC2s, which was experimentally validated. Upon helminth infection, recruited and BM-derived cells generated the entire spectrum of ILC2s in parabiotic and shield chimeric mice, consistent with their potential role in the renewal of tissue ILC2s. Our findings identify local ILCPs and reveal ILCP in situ differentiation and tissue adaptation as a mechanism of ILC maintenance and phenotypic diversification. Local niches, rather than progenitor origin, or the developmental window during ontogeny, may dominantly imprint ILC phenotypes in adult tissues