484 research outputs found

    Insights on the physics of SNIa obtained from their gamma-ray emission

    Full text link
    Type Ia supernovae are thought to be the outcome of the thermonuclear explosion of a carbon/oxygen white dwarf in a close binary system. Their optical light curve is powered by thermalized gamma-rays produced by the radioactive decay of 56^{56}Ni, the most abundant isotope present in the debris. Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the structure of the exploding star and the characteristics of the explosion. The fluxes of the 56^{56}Ni lines and the continuum obtained by INTEGRAL from SN2014J in M82, the first ever gamma-detected SNIa, around the time of the maximum of the optical light curve strongly suggest the presence of a plume of 56^{56}Ni in the outermost layers moving at high velocities. If this interpretation was correct, it could have important consequences on our current understanding of the physics of the explosion and on the nature of the systems that explode.Comment: Proceedings of the 11th INTEGRAL Conference Gamma-Ray AStrophysics in Multi-Wavelength Perspectiv

    The Massive Star Forming Region, Cygnus OB2

    Full text link
    We present results from a catalogue of 1696 X-ray point sources detected in the massive star forming region (SFR) Cygnus OB2, the majority of which have optical or near-IR associations. We derive ages of 3.5 and 5.25 Myrs for the stellar populations in our two fields, in agreement with recent studies that suggest that the central 1-3 Myr OB association is surrounded and contaminated by an older population with an age of 5-10 Myrs. The fraction of sources with proto-planetary disks, as traced by K-band excesses, are unusually low. Though this has previously been interpreted as due to the influence of the large number of OB stars in Cyg OB2, contamination from an older population of stars in the region could also be responsible. An initial mass function is derived and found to have a slope of Gamma = -1.27, in agreement with the canonical value. Finally we introduce the recently approved Chandra Cygnus OB2 Legacy Survey that will image a 1 square degree area of the Cygnus OB2 association to a depth of 120 ks, likely detecting ~10,000 stellar X-ray sources.Comment: 4 pages, 3 figures. To appear in the proceedings of IAU Symposium 266, Star Clusters: Basic Galactic Building Blocks Throughout Time and Space, eds. R. de Grijs and J. Lepin

    SPI Measurements of Galactic 26Al

    Full text link
    The precision measurement of the 1809 keV gamma-ray line from Galactic 26^{26}Al is one of the goals of the SPI spectrometer on INTEGRAL with its Ge detector camera. We aim for determination of the detailed shape of this gamma-ray line, and its variation for different source regions along the plane of the Galaxy. Data from the first part of the core program observations of the first mission year have been inspected. A clear detection of the \Al line at about 5--7 σ\sigma significance demonstrates that SPI will deepen \Al studies. The line intensity is consistent with expectations from previous experiments, and the line appears narrower than the 5.4 keV FWHM reported by GRIS, more consistent with RHESSI's recent value. Only preliminary statements can be made at this time, however, due to the multi-component background underlying the signal at \about 40 times higher intensity than the signal from Galactic 26^{26}Al.Comment: 5 pages, 8 figures; accepted for publication in A&A (special INTEGRAL volume

    SPI observations of the diffuse 60Fe emission in the Galaxy

    Full text link
    Gamma-ray line emission from radioactive decay of 60Fe provides constraints on nucleosynthesis in massive stars and supernovae. The spectrometer SPI on board INTEGRAL has accumulated nearly three years of data on gamma-ray emission from the Galactic plane. We have analyzed these data with suitable instrumental-background models and sky distributions to produce high-resolution spectra of Galactic emission. We detect the gamma-ray lines from 60Fe decay at 1173 and 1333 keV, obtaining an improvement over our earlier measurement of both lines with now 4.9 sigma significance for the combination of the two lines. The average flux per line is (4.4 \pm 0.9) \times 10^{-5} ph cm^{-2} s^{-1} rad^{-1} for the inner Galaxy region. Deriving the Galactic 26Al gamma-ray line flux with using the same set of observations and analysis method, we determine the flux ratio of 60Fe/26Al gamma-rays as 0.148 \pm 0.06. The current theoretical predictions are still consistent with our result.Comment: 10 pages, 7 figures, 2 tables, A&A in pres

    Detection of gamma-ray lines from interstellar 60Fe by the high resolution spectrometer SPI

    Full text link
    It is believed that core-collapse supernovae (CCSN), occurring at a rate about once per century, have seeded the interstellar medium with long-lived radioisotopes such as 60Fe (half-life 1.5 Myr), which can be detected by the gamma rays emitted when they beta-decay. Here we report the detection of the 60Fe decay lines at 1173 keV and 1333 keV with fluxes 3.7 +/- 1.1 x 10(-5) ph cm(-2) s(-1) per line, in spectra taken by the SPI spectrometer on board INTEGRAL during its first year. The same analysis applied to the 1809 keV line of 26Al yielded a line flux ratio 60Fe/26Al = 0.11 +/- 0.03. This supports the hypothesis that there is an extra source of 26Al in addition to CCSN.Comment: 4pp., 5 Figs., accepted by Astronomy & Astrophysics (letter), ref.'s comments include

    On the morphology of the electron-positron annihilation emission as seen by SPI/INTEGRAL

    Full text link
    The 511 keV positron annihilation emission remains a mysterious component of the high energy emission of our Galaxy. Its study was one of the key scientific objective of the SPI spectrometer on-board the INTEGRAL satellite. In fact, a lot of observing time has been dedicated to the Galactic disk with a particular emphasis on the central region. A crucial issue in such an analysis concerns the reduction technique used to treat this huge quantity of data, and more particularly the background modeling. Our method, after validation through a variety of tests, is based on detector pattern determination per ~6 month periods, together with a normalisation variable on a few hour timescale. The Galactic bulge is detected at a level of ~70 sigma allowing more detailed investigations. The main result is that the bulge morphology can be modelled with two axisymmetric Gaussians of 3.2 deg. and 11.8 deg. FWHM and respective fluxes of 2.5 and 5.4 x 10^-4 photons/(cm^2.s^1). We found a possible shift of the bulge centre towards negative longitude at l=-0.6 +/- 0.2 degrees. In addition to the bulge, a more extended structure is detected significantly with flux ranging from 1.7 to 2.9 x10^-3 photons/(cm^2.s^1) depending on its assumed geometry (pure disk or disk plus halo). The disk emission is also found to be symmetric within the limits of the statistical errors.Comment: This paper has 12 pages and 14 figures. Accepted for publication by the Astrophysical Journa

    Predicted gamma-ray line emission from the Cygnus complex

    Full text link
    The Cygnus region harbours a huge complex of massive stars at a distance of 1.0-2.0kpc from us. About 170 O stars are distributed over several OB associations, among which the Cyg OB2 cluster is by far the most important with about 100-120 O stars. These massive stars inject large quantities of radioactive nuclei into the interstellar medium, such as 26Al and 60Fe, and their gamma-ray line decay signals can provide insight into the physics of massive stars and core-collapse supernovae. Past studies of the nucleosynthesis activity of Cygnus have concluded that the level of 26Al decay emission as deduced from CGRO/COMPTEL observations was a factor 2-3 above the predictions based on the theoretical yields available at that time and on the observed stellar content of the Cygnus region. We reevaluate the situation from new measurements of the gamma-ray decay fluxes with INTEGRAL/SPI and new predictions based on recently improved stellar models including some of the effects of stellar rotation for the higher mass stars and a coherent estimate of the contribution from SNIb/c. We developed a population synthesis code to predict the nucleosynthesis activity and corresponding decay fluxes of a given stellar population of massive stars. The observed decay fluxes from the Cygnus complex are found to be consistent with the values predicted by population synthesis at solar metallicity. The observed extent of the 1809keV emission from Cygnus is found to be consistent with the result of a numerical simulation of the diffusion of 26Al inside the superbubble blown by Cyg OB2. Our work indicates that the past dilemma regarding the gamma-ray line emission from Cygnus resulted from an overestimate of the 1809keV flux of the Cygnus complex, combined with an underestimate of the nucleosynthesis yields.Comment: 13 pages, 9 figures, accepted for publication in A&

    The 26^{26}Al Gamma-ray Line from Massive-Star Regions

    Full text link
    The measurement of gamma rays from the diffuse afterglow of radioactivity originating in massive-star nucleosynthesis is considered a laboratory for testing models, when specific stellar groups are investigated, at known distance and with well-constrained stellar population. Regions which have been exploited for such studies include Cygnus, Carina, Orion, and Scorpius-Centaurus. The Orion region hosts the Orion OB1 association and its subgroups at about 450~pc distance. We report the detection of 26^{26}Al gamma rays from this region with INTEGRAL/SPI.Comment: Contribution to Symposium "Nuclei in the Cosmos XIV", Niigata, Japan, Jun 2016; 3 pages, 2 figures; accepted for publication in JPS (Japan Physical Society) Conference Proceedings http://jpscp.jps.jp

    Gamma-rays from Type Ia supernova SN2014J

    Get PDF
    The whole set of INTEGRAL observations of type Ia supernova SN2014J, covering the period 19-162 days after the explosion has being analyzed. For spectral fitting the data are split into "early" and "late" periods covering days 19-35 and 50-162, respectively, optimized for 56^{56}Ni and 56^{56}Co lines. As expected for the early period much of the gamma-ray signal is confined to energies below \sim200 keV, while for the late period it is most strong above 400 keV. In particular, in the late period 56^{56}Co lines at 847 and 1248 keV are detected at 4.7 and 4.3 σ\sigma respectively. The lightcurves in several representative energy bands are calculated for the entire period. The resulting spectra and lightcurves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical 1D models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass WD. Late optical spectra (day 136 after the explosion) show rather symmetric Co and Fe lines profiles, suggesting that unless the viewing angle is special, the distribution of radioactive elements is symmetric in the ejecta.Comment: 21 pages, 16 figures, accepted by Ap
    corecore