101 research outputs found

    Moodle-based data mining potentials of MOOC systems at the University of Szeged

    Get PDF
    In today's world virtual online educational platforms emerge literally on daily bases and many offer MOOC-based courses. With the appearance of MOOC, educational platforms have gained an additional boost, a new aspect in their evolutionary process, which has opened a new field of research thanking to the extraction of logging information within the frames of data mining. It has become clear that educators will be able to tailor their courses by merging the two previously mentioned fields and by carrying out MOOC-based data mining, targeting pedagogical aspects. This field of research seems promising and important, thus a faculty at the University of Szeged has created its own MOOC educational platform which has been set to facilitate data mining by implementing a wide range of logging algorithms. The data would be processed through a complex Artificial Intelligence program, which, in the short term, could reveal new and exciting pedagogical findings, while in the long run, the supervisors could put together a platform that would help and notify educators about relevant information. It would become possible to create adaptive educational materials, as well. This work aims at clarifying how such platforms function and what the steps of data collection and evaluation are

    A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching

    Full text link
    Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.Izquierdo Sebastián, J.; Montalvo Arango, I.; Campbell, E.; Pérez García, R. (2015). A hybrid, auto-adaptive, and rule-based multi-agent approach using evolutionary algorithms for improved searching. Engineering Optimization. 1-13. doi:10.1080/0305215X.2015.1107434S113Becker, U., & Fahrmeir, L. (2001). Bump Hunting for Risk: a New Data Mining Tool and its Applications. Computational Statistics, 16(3), 373-386. doi:10.1007/s001800100073Bouguessa, M., & Shengrui Wang. (2009). Mining Projected Clusters in High-Dimensional Spaces. IEEE Transactions on Knowledge and Data Engineering, 21(4), 507-522. doi:10.1109/tkde.2008.162Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1-2), 103-112. doi:10.1016/j.chemolab.2004.12.011CHONG, I., & JUN, C. (2008). Flexible patient rule induction method for optimizing process variables in discrete type. Expert Systems with Applications, 34(4), 3014-3020. doi:10.1016/j.eswa.2007.05.047Cole, S. W., Galic, Z., & Zack, J. A. (2003). Controlling false-negative errors in microarray differential expression analysis: a PRIM approach. Bioinformatics, 19(14), 1808-1816. doi:10.1093/bioinformatics/btg242FRIEDMAN, J. H., & FISHER, N. I. (1999). Statistics and Computing, 9(2), 123-143. doi:10.1023/a:1008894516817Geem, Z. W. (2006). Optimal cost design of water distribution networks using harmony search. Engineering Optimization, 38(3), 259-277. doi:10.1080/03052150500467430Goncalves, L. B., Vellasco, M. M. B. R., Pacheco, M. A. C., & Flavio Joaquim de Souza. (2006). Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 36(2), 236-248. doi:10.1109/tsmcc.2004.843220Hastie, T., Friedman, J., & Tibshirani, R. (2001). The Elements of Statistical Learning. Springer Series in Statistics. doi:10.1007/978-0-387-21606-5Chih-Ming Hsu, & Ming-Syan Chen. (2009). On the Design and Applicability of Distance Functions in High-Dimensional Data Space. IEEE Transactions on Knowledge and Data Engineering, 21(4), 523-536. doi:10.1109/tkde.2008.178Hwang, S.-F., & He, R.-S. (2006). A hybrid real-parameter genetic algorithm for function optimization. Advanced Engineering Informatics, 20(1), 7-21. doi:10.1016/j.aei.2005.09.001Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Javadi, A. A., Farmani, R., & Tan, T. P. (2005). A hybrid intelligent genetic algorithm. Advanced Engineering Informatics, 19(4), 255-262. doi:10.1016/j.aei.2005.07.003Jin, X., Zhang, J., Gao, J., & Wu, W. (2008). Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II. Journal of Zhejiang University-SCIENCE A, 9(3), 391-400. doi:10.1631/jzus.a071448Johns, M. B., Keedwell, E., & Savic, D. (2014). Adaptive locally constrained genetic algorithm for least-cost water distribution network design. Journal of Hydroinformatics, 16(2), 288-301. doi:10.2166/hydro.2013.218Jourdan, L., Corne, D., Savic, D., & Walters, G. (2005). Preliminary Investigation of the ‘Learnable Evolution Model’ for Faster/Better Multiobjective Water Systems Design. Evolutionary Multi-Criterion Optimization, 841-855. doi:10.1007/978-3-540-31880-4_58Kamwa, I., Samantaray, S. R., & Joos, G. (2009). Development of Rule-Based Classifiers for Rapid Stability Assessment of Wide-Area Post-Disturbance Records. IEEE Transactions on Power Systems, 24(1), 258-270. doi:10.1109/tpwrs.2008.2009430Kang, D., & Lansey, K. (2012). Revisiting Optimal Water-Distribution System Design: Issues and a Heuristic Hierarchical Approach. Journal of Water Resources Planning and Management, 138(3), 208-217. doi:10.1061/(asce)wr.1943-5452.0000165Keedwell, E., & Khu, S.-T. (2005). A hybrid genetic algorithm for the design of water distribution networks. Engineering Applications of Artificial Intelligence, 18(4), 461-472. doi:10.1016/j.engappai.2004.10.001Kehl, V., & Ulm, K. (2006). Responder identification in clinical trials with censored data. Computational Statistics & Data Analysis, 50(5), 1338-1355. doi:10.1016/j.csda.2004.11.015Liu, X., Minin, V., Huang, Y., Seligson, D. B., & Horvath, S. (2004). Statistical Methods for Analyzing Tissue Microarray Data. Journal of Biopharmaceutical Statistics, 14(3), 671-685. doi:10.1081/bip-200025657Marchi, A., Dandy, G., Wilkins, A., & Rohrlach, H. (2014). Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. Journal of Water Resources Planning and Management, 140(1), 22-31. doi:10.1061/(asce)wr.1943-5452.0000321Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2McClymont, K., Keedwell, E., Savić, D., & Randall-Smith, M. (2013). A general multi-objective hyper-heuristic for water distribution network design with discolouration risk. Journal of Hydroinformatics, 15(3), 700-716. doi:10.2166/hydro.2012.022McClymont, K., Keedwell, E. C., Savić, D., & Randall-Smith, M. (2014). Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. Journal of Hydroinformatics, 16(2), 302-318. doi:10.2166/hydro.2013.226Michalski, R. S. (2000). Machine Learning, 38(1/2), 9-40. doi:10.1023/a:1007677805582Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Nguyen, V. V., Hartmann, D., & König, M. (2012). A distributed agent-based approach for simulation-based optimization. Advanced Engineering Informatics, 26(4), 814-832. doi:10.1016/j.aei.2012.06.001Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., … Chan-Hilton, A. (2010). State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. Journal of Water Resources Planning and Management, 136(4), 412-432. doi:10.1061/(asce)wr.1943-5452.0000053Onwubolu, G. C., & Babu, B. V. (2004). New Optimization Techniques in Engineering. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-39930-8Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). Computational Optimization and Applications, 21(1), 5-20. doi:10.1023/a:1013500812258Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., & Kollat, J. B. (2013). Evolutionary multiobjective optimization in water resources: The past, present, and future. Advances in Water Resources, 51, 438-456. doi:10.1016/j.advwatres.2012.01.005Shang, W., Zhao, S., & Shen, Y. (2009). A flexible tolerance genetic algorithm for optimal problems with nonlinear equality constraints. Advanced Engineering Informatics, 23(3), 253-264. doi:10.1016/j.aei.2008.09.001Vrugt, J. A., & Robinson, B. A. (2007). Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences, 104(3), 708-711. doi:10.1073/pnas.0610471104Vrugt, J. A., Robinson, B. A., & Hyman, J. M. (2009). Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces. IEEE Transactions on Evolutionary Computation, 13(2), 243-259. doi:10.1109/tevc.2008.924428Xie, X.-F., & Liu, J. (2008). Graph coloring by multiagent fusion search. Journal of Combinatorial Optimization, 18(2), 99-123. doi:10.1007/s10878-008-9140-6Xiao-Feng Xie, & Jiming Liu. (2009). Multiagent Optimization System for Solving the Traveling Salesman Problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 489-502. doi:10.1109/tsmcb.2008.2006910Zheng, F., Simpson, A. R., & Zecchin, A. C. (2013). A decomposition and multistage optimization approach applied to the optimization of water distribution systems with multiple supply sources. Water Resources Research, 49(1), 380-399. doi:10.1029/2012wr013160Zheng, F., Simpson, A. R., & Zecchin, A. C. (2014). Coupled Binary Linear Programming–Differential Evolution Algorithm Approach for Water Distribution System Optimization. Journal of Water Resources Planning and Management, 140(5), 585-597. doi:10.1061/(asce)wr.1943-5452.000036

    Extended Comprehensive Study of Association Measures for Fault Localization

    Get PDF
    To cite the data package, please use the following citation: Lucia, L., Lo, D., Jiang, L., Thung, F., & Budi, A. (2014). Data from: Extended Comprehensive Study of Association Measures for Fault Localization. InK Repository at Singapore Management University. http://ink.library.smu.edu.sg/sis_research/1818</p

    Porosity and Surface Properites of SBA-15 with Grafted PNIPAAM: A Water Sorption Calorimetry Study

    Get PDF
    Mesoporous silica SBA-15 was modified in a three-step process to obtain a material with poly-N-isopropylacrylamide (PNIPAAM) grafted onto the inner pore surface. Water sorption calorimetry was implemented to characterize the materials obtained after each step regarding the porosity and surface properties. The modification process was carried out by (i) increasing the number of surface silanol groups, (ii) grafting 1-(trichlorosilyl)-2-(m-/p-(chloromethylphenyl) ethane, acting as an anchor for (iii) the polymerization of N-isopropylacrylamide. Water sorption isotherms and the enthalpy of hydration are presented. Pore size distributions were calculated on the basis of the water sorption isotherms by applying the BJH model. Complementary measurements with nitrogen sorption and small-angle X-ray diffraction are presented. The increase in the number of surface silanol groups occurs mainly in the intrawall pores, the anchor is mainly located in the intrawall pores, and the intrawall pore volume is absent after the surface grafting of PNIPAAM. Hence, PNIPAAM seals off the intrawall pores. Water sorption isotherms directly detect the presence of intrawall porosity. Pore size distributions can be calculated from the isotherms. Furthermore, the technique provides information regarding the hydration capability (i.e., wettability of different chemical surfaces) and thermodynamic information

    Subgroup Discovery for Weight Learning in Breast Cancer Diagnosis

    No full text
    corecore