28 research outputs found

    Bioresorbable Film for the Prevention of Adhesion to the Anterior Spine After Anterolateral Discectomy

    Get PDF
    Background context The development of scar tissue and adhesions postoperatively is a natural consequence of healing but can be associated with medical complications and render reoperation difficult. Many biocompatible products have been evaluated as barriers or deterrents to adhesions. Purpose To evaluate the efficacy of a bioresorbable polylactide film as a barrier to adhesion formation after anterolateral discectomy. Study design Experimental study. Methods Seven, skeletally mature female sheep underwent a retroperitoneal approach to the anterolateral lumbar spine. A discectomy was performed at two levels with an intervening unoperated disc site. One site was treated with a polylactide film barrier (Hydrosorb Shield; MacroPore Biosurgery, San Diego, CA) affixed with tacks manufactured from the same material. The second site was left untreated. Treatment and control sites were randomly assigned. Postmortem analysis included scar tenacity scoring on five spines and histological evaluation on two spines. Results The application of the Hydrosorb film barrier allowed a definite dissection plane during scar tenacity scoring and there was a significant difference in the development of adhesions to the disc between the control and treated sites. Histological evaluation revealed evidence of barrier formation to scar tissue and no significant adverse inflammatory reactions. Conclusions Hydrosorb Shield appears to be an effective postoperative barrier to scar tissue adhesion after anterolateral discectomy. The use of polylactide tacks was beneficial to affix the barrier film in place. Safety issues associated with delayed healing or adverse response to the film or tacks were not observed. Hydrosorb film may be useful as an antiadhesion barrier facilitating dissection during surgical revision in anterior approaches to the spine. Further studies are indicated to evaluate the performance of the bioresorbable material as an antiadhesion barrier in techniques of spinal fusion and disc replacement

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Table_1_Highly Promiscuous Oxidases Discovered in the Bovine Rumen Microbiome.XLSX

    No full text
    <p>The bovine rumen hosts a diverse microbiota, which is highly specialized in the degradation of lignocellulose. Ruminal bacteria, in particular, are well equipped to deconstruct plant cell wall polysaccharides. Nevertheless, their potential role in the breakdown of the lignin network has never been investigated. In this study, we used functional metagenomics to identify bacterial redox enzymes acting on polyaromatic compounds. A new methodology was developed to explore the potential of uncultured microbes to degrade lignin derivatives, namely kraft lignin and lignosulfonate. From a fosmid library covering 0.7 Gb of metagenomic DNA, three hit clones were identified, producing enzymes able to oxidize a wide variety of polyaromatic compounds without the need for the addition of copper, manganese, or mediators. These promiscuous redox enzymes could thus be of potential interest both in plant biomass refining and dye remediation. The enzymes were derived from uncultured Clostridia, and belong to complex gene clusters involving proteins of different functional types, including hemicellulases, which likely work in synergy to produce substrate degradation.</p

    A genome-wide association study identifies novel loci associated with circulating IGF-I and IGFBP-3

    No full text
    Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) are involved in cell replication, proliferation, differentiation, protein synthesis, carbohydrate homeostasis and bone metabolism. Circulating IGF-I and IGFBP-3 concentrations predict anthropometric traits and risk of cancer and cardiovascular disease. In a genome-wide association study of 10 280 middle-aged and older men and women from four community-based cohort studies, we confirmed a known association of single nucleotide polymorphisms in the IGFBP3 gene region on chromosome 7p12.3 with IGFBP-3 concentrations using a significance threshold of P < 5 × 10−8 (P = 3.3 × 10−101). Furthermore, the same IGFBP3 gene locus (e.g. rs11977526) that was associated with IGFBP-3 concentrations was also associated with the opposite direction of effect, with IGF-I concentration after adjustment for IGFBP-3 concentration (P = 1.9 × 10−26). A novel and independent locus on chromosome 7p12.3 (rs700752) had genome-wide significant associations with higher IGFBP-3 (P = 4.4 × 10−21) and higher IGF-I (P = 4.9 × 10−9) concentrations; when the two measurements were adjusted for one another, the IGF-I association was attenuated but the IGFBP-3 association was not. Two additional loci demonstrated genome-wide significant associations with IGFBP-3 concentration (rs1065656, chromosome 16p13.3, P = 1.2 × 10−11, IGFALS, a confirmatory finding; and rs4234798, chromosome 4p16.1, P = 4.5 × 10−10, SORCS2, a novel finding). Together, the four genome-wide significant loci explained 6.5% of the population variation in IGFBP-3 concentration. Furthermore, we observed a borderline statistically significant association between IGF-I concentration and FOXO3 (rs2153960, chromosome 6q21, P = 5.1 × 10−7), a locus associated with longevity. These genetic loci deserve further investigation to elucidate the biological basis for the observed associations and clarify their possible role in IGF-mediated regulation of cell growth and metabolism
    corecore