153 research outputs found

    Standardized immunohistochemistry of estrogen receptors in human breast carcinoma in routinely processed tissue

    Get PDF

    Response of Net Ecosystem Productivity of Three Boreal Forest Stands to Drought

    Get PDF
    In 2000-03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3-year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100-km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these condition

    Gain Recovery in Heavily Irradiated Low Gain Avalanche Detectors by High Temperature Annealing

    Full text link
    Studies of annealing at temperatures up to 450^\circC with LGADs irradiated with neutrons are described. It was found that the performance of LGADs irradiated with 1.5e15 n/cm2^2 was already improved at 5 minutes of annealing at 250^\circC. Isochronal annealing for 30 minutes in 50^\circC steps between 300^\circC and 450^\circC showed that the largest beneficial effect of annealing is at around 350^\circC. Another set of devices was annealed for 60 minutes at 350^\circC and this annealing significantly increased Vgl_{\mathrm{gl}}. The effect is equivalent to reducing the effective acceptor removal constant by a factor of \sim 4. Increase of Vgl_{\mathrm{gl}} is the consequence of increased effective space charge in the gain layer caused by formation of electrically active defects or re-activation of interstitial Boron atoms

    A new class of platinum(II) complexes with the phosphine ligand pta which show potent anticancer activity

    Get PDF
    The anticancer potential of sixteen platinum(II) complexes with general formulae [PtCl(hq)(S-dmso)] (1a-8a) and [PtCl(hq)(pta)] (1b-8b) (where hq is 5-chloro-7-iodo-8-quinolinol (clioquinol; cqH) (1a, 1b), 8-hydroxy-5-nitroquinoline (nitroxoline; nxH) (2a, 2b), 5,7-dichloro-8-quinolinol (3a, 3b), 5,7-diiodo-8-quinolinol (4a, 4b), 5,7-dibromo-8-quinolinol (5a, 5b), 5,7-dichloro-8-hydroxy-2-methyl-quinoline (6a, 6b), 8-hydroxyquinoline (7a, 7b) and 8-quinolinethiol (8a, 8b); dmso is dimethyl sulfoxide and pta is 1,3,5triaza- 7-phosphaadamantane) was determined through in vitro cytotoxicity assay in human fibroblasts (MRC5) and two carcinoma cell lines (A375 and A549) and embryotoxicity assay in a zebrafish model. Interactions with double stranded DNA through in vitro assay and a molecular docking study were examined. All complexes, except 6a, exhibited a high cytotoxic effect on MRC5 cells at a concentration of 10 mu g mL(-1) while 1b, 5a, 6a and 3b showed selective toxicity towards carcinoma cell lines. In general, pta-based complexes (series b) were more toxic according to the results of a MTT screen and the LC50 values obtained in zebrafish (Danio rerio) assay; they also induced higher oxidative stress in this model. Successful cellular uptake of complexes was shown by the ICP-MS methodology. The binding propensity of the complex with DNA obtained in in silico studies can be correlated with those from the experimental investigation. Compounds with the highest binding potential, according to the interaction energy value, were 1b, 3b, 6b and 5b. From observations of the DNA interaction ability and of the in silico assessment, no apparent DNA fragmentation was observed either on DNA extracted from the treated cancer cell line or from the zebrafish embryos.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3144

    Solution Equilibrium Studies of Anticancer Ruthenium(II)-η6-p-cymene Complexes of Pyridinecarboxylic Acids

    Get PDF
    Stoichiometry and stability of antitumor ruthenium(II)-η6-p-cymene complexes of picolinic acid and its 6-methyl and 6-carboxylic acid derivatives were determined by pH-potentiometry, 1H NMR spectroscopy and UV–Vis spectrophotometry in aqueous solution in the presence or absence of coordinating chloride ions. The picolinates form exclusively mono-ligand complexes in which they can coordinate via the bidentate (O,N) mode and a chloride or a water molecule is found at the third binding site of the ruthenium(II)-η6-p-cymene moiety depending on the conditions. [Ru(η6-p-cymene)(L)(H2O/Cl)] species are predominant at physiological pH in all studied cases. Hydrolysis of the aqua complex or the chlorido/hydroxido co-ligand exchange results in the formation of the mixed-hydroxido species [Ru(η6-p-cymene)(L)(OH)] in the basic pH range. There is no indication for the decomposition of the mono-ligand complexes during 24 h in the ruthenium(II)-η6-p-cymene-picolinic acid system between pH 3 and 11; however, a slight dissociation with a low reaction rate was found in the other two systems leading to the appearance of the dinuclear trihydroxido-bridged species [Ru2(η6-p-cymene)2(OH)3]+ and free ligands at pH > 10. The replacement of the chlorido by an aqua ligand in [Ru(η6-p-cymene)(L)Cl] was also monitored and equilibrium constants for the exchange process were determined

    Methane exchange in a boreal forest estimated by gradient method

    Get PDF
    Forests are generally considered to be net sinks of atmospheric methane (CH4) because of oxidation by methanotrophic bacteria in well-aerated forests soils. However, emissions from wet forest soils, and sometimes canopy fluxes, are often neglected when quantifying the CH4 budget of a forest. We used a modified Bowen ratio method and combined eddy covariance and gradient methods to estimate net CH4 exchange at a boreal forest site in central Sweden. Results indicate that the site is a net source of CH4. This is in contrast to soil, branch and leaf chamber measurements of uptake of CH4. Wetter soils within the footprint of the canopy are thought to be responsible for the discrepancy. We found no evidence for canopy emissions per se. However, the diel pattern of the CH4 exchange with minimum emissions at daytime correlated well with gross primary production, which supports an uptake in the canopy. More distant source areas could also contribute to the diel pattern; their contribution might be greater at night during stable boundary layer conditions

    Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data

    Get PDF
    Forest soils are generally considered to be net sinks of methane (CH4), but CH4 fluxes vary spatially depending on soil conditions. Measuring CH4 exchange with chambers, which are commonly used for this purpose, might not result in representative fluxes at site scale. Appropriate methods for upscaling CH4 fluxes from point measurements to site scale are therefore needed. At the boreal forest research site, Norunda, chamber measurements of soils and vegetation indicate that the site is a net sink of CH4, while tower gradient measurements indicate that the site is a net source of CH4. We investigated the discrepancy between chamber and tower gradient measurements by upscaling soil CH4 exchange to a 100 ha area based on an empirical model derived from chamber measurements of CH4 exchange and measurements of soil moisture, soil temperature and water table depth. A digital elevation model (DEM) derived from high-resolution airborne Light Detection and Ranging (LiDAR) data was used to generate gridded water table depth and soil moisture data of the study area as input data for the upscaling. Despite the simplistic approach, modeled fluxes were significantly correlated to four out of five chambers with R>0.68. The upscaling resulted in a net soil sink of CH4 of -10 mu mol m(-2) h(-1), averaged over the entire study area and time period June-September, 2010). Our findings suggest that additional contributions from CH4 soil sources outside the upscaling study area and possibly CH4 emissions from vegetation could explain the net emissions measured by tower gradient measurements. (C) 2015 Elsevier B.V. All rights reserved

    Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the ‘Angry Summer’ of 2012/2013

    Get PDF
    As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.Eva van Gorsel, Sebastian Wolf, James Cleverly, Peter Isaac, Vanessa Haverd, Cäcilia Ewenz, Stefan Arndt, Jason Beringer, Víctor Resco de Dios, Bradley J. Evans, Anne Griebel, Lindsay B. Hutley, Trevor Keenan, Natascha Kljun, Craig Macfarlane, Wayne S. Meyer, Ian McHugh, Elise Pendall, Suzanne M. Prober and Richard Silberstei
    corecore