7 research outputs found
An Improved Substrate for Superior Imaging of Individual Biomacromolecules with Atomic Force Microscopy
© 2020 Elsevier B.V. High-resolution atomic force microscopy (AFM) of biomacromolecules is a valuable method for structural studies in biology. Traditionally, the surfaces used for AFM imaging of individual molecules are limited to mica, graphite, and glass. Because these substrates have certain shortcomings, new or modified surfaces that improve the quality of AFM imaging are highly desirable. Here, we describe an improved substrate for imaging of individual biomacromolecules with high-resolution AFM based on graphite surfaces coated by physical adsorption. We provide a detailed methodology, including the chemical structure, synthesis, characterization and the use of a substance that modifies the surface of freshly cleaved graphite, making it suitable for adsorption and AFM visualization of various biomacromolecules while minimizing spatial distortions. We illustrate the advantages of the modified graphite over regular surfaces with examples of high-resolution single-molecule imaging of proteins, polysaccharides, DNA and DNA-protein complexes. The proposed methodology is easy to use and helps to improve substantially AFM imaging of biomacromolecules of various natures, including flexible and/or unstructured sub-molecular regions that are not seen on other AFM substrates. The proposed technique has the potential to improve the use of AFM in structural biology for visualization and morphometric characterization of macromolecular objects
Perspectives in the Development of Biosensors Based on AlGaN/GaN HEMT
The development and investigation of biosensors for the early and rapid diagnosis of a wide spectrum of diseases to provide significant reductions in mortality and loss of working time as a result of timely treatment is a current challenge in many countries. The active progress in biosensor technology is promoted by the fact that it is an interdisciplinary field exploiting advancements in very diverse areas of knowledge: from physiology to nanotechnology and electronics. © 2019, Springer Science+Business Media, LLC, part of Springer Nature
Can Dissipative Properties of Single Molecules Be Extracted from a Force Spectroscopy Experiment?
We performed dynamic force spectroscopy of single dextran and titin I27 molecules using small-amplitude and low-frequency (40-240 Hz) dithering of an atomic force microscope tip excited by a sine wave voltage fed onto the tip-carrying piezo. We show that for such low-frequency dithering experiments, recorded phase information can be unambiguously interpreted within the framework of a transparent theoretical model that starts from a well-known partial differential equation to describe the dithering of an atomic force microscope cantilever and a single molecule attached to its end system, uses an appropriate set of initial and boundary conditions, and does not exploit any implicit suggestions. We conclude that the observed phase (dissipation) signal is due completely to the dissipation related to the dithering of the cantilever itself (i.e., to the change of boundary conditions in the course of stretching). For both cases, only the upper bound of the dissipation of a single molecule has been established as not exceeding 3⋅10(-7)kg/s. We compare our results with previously reported measurements of the viscoelastic properties of single molecules, and we emphasize that extreme caution must be taken in distinguishing between the dissipation related to the stretched molecule and the dissipation that originates from the viscous damping of the dithered cantilever. We also present the results of an amplitude channel data analysis, which reveal that the typical values of the spring constant of a I27 molecule at the moment of module unfolding are equal to 4±1.5mN/m, and the typical values of the spring constant of dextran at the moment of chair-boat transition are equal to 30-50mN/m
Myeloperoxidase-induced fibrinogen unfolding and clotting
Due to its unique properties and high biomedical relevance fibrinogen is a promising protein for the development of various matrixes and scaffolds for biotechnological applications. Fibrinogen molecules may form extensive clots either upon specific cleavage by thrombin or in thrombin-free environment, for example, in the presence of different salts. Here, we report the novel type of non-conventional fibrinogen clot formation, which is mediated by myeloperoxidase and takes place even at low fibrinogen concentrations (<0.1 mg/ml). We have revealed fibrillar nature of myeloperoxidase-mediated fibrinogen clots, which differ morphologically from fibrin clots. We have shown that fibrinogen clotting is mediated by direct interaction of myeloperoxidase molecules with the outer globular regions of fibrinogen molecules followed by fibrinogen unfolding from its natural trinodular to a fibrillar structure. We have demonstrated a major role of the Debye screening effect in regulating of myeloperoxidase-induced fibrinogen clotting, which is facilitated by small ionic strength. While fibrinogen in an aqueous solution with myeloperoxidase undergoes changes, the enzymatic activity of myeloperoxidase is not inhibited in excess of fibrinogen. The obtained results open new insights into fibrinogen clotting, give new possibilities for the development of fibrinogen-based functional biomaterials, and provide the novel concepts of protein unfolding. © 2022 Wiley Periodicals LLC
Neutrophil Activation by Mineral Microparticles Coated with Methylglyoxal-Glycated Albumin
Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG