2,208 research outputs found

    Are there plasminos in superconductors?

    Full text link
    Hot and/or dense, normal-conducting systems of relativistic fermions exhibit a particular collective excitation, the so-called plasmino. We compute the one-loop self-energy, the dispersion relation and the spectral density for fermions interacting via attractive boson exchange. It is shown that plasminos also exist in superconductors.Comment: 15 pages, 14 figures, revte

    Multiexcitons confined within a sub-excitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals

    Full text link
    The use of ultrafast gating techniques allows us to resolve both spectrally and temporally the emission from short-lived neutral and negatively charged biexcitons in ultrasmall (sub-10 nm) CdSe nanocrystals (nanocrystal quantum dots). Because of forced overlap of electronic wave functions and reduced dielectric screening, these states are characterized by giant interaction energies of tens (neutral biexcitons) to hundreds (charged biexcitons) of meV. Both types of biexcitons show extremely short lifetimes (from sub-100 picoseconds to sub-picosecond time scales) that rapidly shorten with decreasing nanocrystal size. These ultrafast relaxation dynamics are explained in terms of highly efficient nonradiative Auger recombination.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Rethinking the Properties of the Quark-Gluon Plasma at T∼TcT\sim T_c

    Full text link
    We argue that although at asymptotically high temperatures the QGP in bulk behaves as a gas of weakly interacting quasiparticles (modulo long-range magnetism), at temperatures up to few times the critical temperature TcT_c it displays different properties. If the running of the QCD coupling constant continues in the Coulomb phase till the screening length scale, it reaches the strong coupling treshold αs(mD)∼1\alpha_s(m_D)\sim 1. As a result, the Coulomb phase supports weakly bound Coulombic s-wave cˉc\bar c c, light quark and even gggg states. The existence of shallow bound states dramatically increases the quasiparticle rescattering at low energies, reducing the viscosity and thereby explaining why heavy ion collisions at RHIC exhibit robust collective phenomena. In conformal gauge theories at finite temperature the Coulomb binding persists further in the strong coupling regime, as found for N=4{\cal N}=4 SUSY YM in the Maldacena regime.Comment: v2 version have one more figure and one more reference, v3 is the same as v2 except a double-page format (the v2 had corrupted last lines on the page

    Different regimes of Forster energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals

    Full text link
    We calculate the rate of non-radiative, Forster-type energy transfer (ET) from an excited epitaxial quantum well (QW) to a proximal monolayer of semiconductor nanocrystal quantum dots (QDs). Different electron-hole configurations in the QW are considered as a function of temperature and excited electron-hole density. A comparison of the theoretically determined ET rate and QW radiative recombination rate shows that, depending on the specific conditions, the ET rate is comparable to or even greater than the radiative recombination rate. Such efficient Forster ET is promising for the implementation of ET-pumped, nanocrystal QD-based light emitting devices.Comment: 14 pages, 4 figure

    Hard thermal loops with a background plasma velocity

    Get PDF
    I consider the calculation of the two and three-point functions for QED at finite temperature in the presence of a background plasma velocity. The final expressions are consistent with Lorentz invariance, gauge invariance and current conservation, pointing to a straightforward generalization of the hard thermal loop formalism to this physical situation. I also give the resulting expression for the effective action and identify the various terms.Comment: 11 pages, no figure
    • …
    corecore