95 research outputs found

    Micropropagation of a recalcitrant pine (Pinus pinea L.): An overview of the effects of ectomycorrhizal inoculation

    Get PDF
    Stone pine (Pinus pinea L.) is an economically important forest species in some regions of Iberian Peninsula. Portugal and Spain have nearly 500,000 ha of stone pine stands, representing 85% of worldwide distribution. The main use of this species is for the production of seeds (pinion) for food industry. In addition to its enormous profitability as a producer of seeds, it has beneficial impact on soil protection, dunes fixation and is a pioneer species particularly for cork and holm oaks degraded ecosystems. Stone pine plantations are today a major source of income for forestry holdings. Investments have targeted breeding, reforestation, forest management and harvesting. The maternal inheritance of desirable characteristics such as cone weight, number of seeds per cone and seed length is considerably high in this species thus encouraging the selection of seeds from “plus” trees. The selected trees have been propagated by grafting and micropropagation. However, grafting generates high variability due to scion-rootstock interaction that varies production levels. The production of clonal plants from selected seeds by micropropagation techniques has advanced very slowly due to the recalcitrance of this species in tissue culture and particularly to adventitious rooting of microshoots. Due to the tremendous importance of developing a reproducible tissue culture method for clonal propagation, a study has been carried out for over a decade to enhance rooting and acclimation. During this period of time, continuous increments in the multiplication rate and rooting frequency were achieved by introducing variations in culture media composition and conditions. Auxins, carbohydrates, light quality and duration, temperature at different concentrations and levels as well as compounds such as coumarin; salicylic acid, polyamines, etc. were tested for induction and expression phases of adventitious rooting. Despite these efforts, microshoots regenerated through organogenesis from mature embryo cotyledons failed to root or to have sustained root growth. At this point, an in vitro co-culture technique of stone pine microshoots with ectomycorrhizal-fungi was introduced to overcome the adventitious root growth cessation in vitro and improve root development during acclimation phase. An overview of the results showing the positive effect of fungal inoculation in promoting root growth in vitro and on plantlet survival during acclimation will be presented. Preliminary results of biochemical signals between Pinus pinea/Pisolithus arhizus during early steps of in vitro culture detected by liquid chromatography-mass spectrometry that might be responsible for the positive effect on root growth will be also presented

    The interactions between SATB1 and F-actin are important for mechanisms of active cell death

    Get PDF
    Introduction. The direct involvement of nuclear actin filaments in gene transcription and remodeling of chromatin is still debatable. However, nuclear localization of F-actin and its interactions with other nuclear matrix proteins have been reported. The aim of the study was to estimate the interactions between nuclear F-actin and one of the matrix proteins, special AT-rich sequence-binding protein 1 (SATB1), during active cell death induced in vitro by geldanamycin (GA). Material and methods. The expression of SATB1 was modified by the transfection of non-aggressive breast cancer MCF-7 cells with siRNA against SATB1 or expression plasmid with cloned cDNA of SATB1. The amount and localization of F-actin were altered by changes of cofilin-1 (CFL1) expression in MCF-7 cells. The association between SATB1 and F-actin during GA-induced cell death was analyzed using confocal and transmission electron microscopy. Results. Our studies revealed the colocalization between nuclear F-actin and SATB1 protein, during GA-induced death of breast cancer MCF-7 cells. The colocalization was enhanced in cells with overexpressed SATB1 and cofilin-1. At the ultrastructural level the SATB1 and F-actin complexes were seen at the border of condensed and decondensed chromatin. The presence of SATB1/F-actin molecular complexes was confirmed by magnetic separation of F-actin and interacting proteins. Conclusion. We suggest that the molecular interactions between SATB1 and F-actin are necessary for active cell death to occur

    O-coumaric acid ester, a potential early signaling molecule in Pinus pinea and Pisolithus arhizus symbiosis established in vitro

    Get PDF
    During ectomycorrhizal (ECM) establishment, biochemical signals lead to the development of complex structures in both the plant and the fungus that ultimately result in the formation of an ectomycorrhiza. The cross-talk between partners begins before physical contact. Our objective was to investigate the chemical nature of the signals during the first stages of in vitro mycorrhization of Pinus pinea with Pisolithus arhizus. For this purpose a double-phase solid liquid medium was expressly developed for the co-culture in order to simplify the extraction and further molecules analysis. O-coumaric acid ester was identified using HPLC UV and LC DAD MS on the second day of co-culture and its presence was detected for up to 10 days. These results contribute to the characterization of biochemical signals during pre-colonization involving conifer species and an ECM fungus, and demonstrate the suitability of the double-phase medium developed for the growth of both organisms and for the analysis of released chemical mediators.info:eu-repo/semantics/publishedVersio

    Mycorrhiza-like structures in rooted microshoots of Pinus pinea L.

    Get PDF
    Pinus pinea L. (stone pine) is one of the major plantation species in Iberian Peninsula, being Portugal the largest edible seed producer in the world. The induction and improvement of in vitro rhizogenesis of microshoots of Pinus pinea was developed in our laboratory using a co-culture system with ECM fungi. In the acclimation phase in mixed substrates, or in rhizotrons, anatomical and morphological studies were done to observe the evolution of the root system in microshoots from the co-culture system vs. control plants. Extensive dichotomous and coralloid branching of lateral roots occurred spontaneously in inoculated and control plants as well. Moreover, similar branching occurred in liquid culture of excised seedling roots without the presence of ECM fungi. The striking similarity of these organs with pine ectomycorrhizas prompted their anatomical analysis; however the presence of Hartig net was not confirmed. These results suggested that the development of ECM-like structures might have occurred spontaneously

    Pisolithus arhizus (Scop.) Rauschert improves growth of adventitious roots and acclimatization of in vitro regenerated plantlets of Pinus pinea L.

    Get PDF
    Stone pine (Pinus pinea L.) is an economically important forest tree in the Mediterranean region and has been the target of breeding and selection through micropropagation mainly for its ecological and ornamental aspects. A crucial step in micropropagation is adventitious rooting of microshoots, which often is highly inefficient in most conifer species including stone pine. Hence, we conducted in vitro co-culture of Pinus pinea microshoots with the ectomycorrhizal fungus Pisolithus arhizus (isolated from natural stands) in order to promote adventitious root growth and plant survival during acclimatization. Significant differences were found in the number of branches, in the number of roots plus branches, in total length of roots, in total length of roots plus branches, in average root length and in the length of the longest root in inoculated plants during in vitro rooting compared with non-inoculated plants. The roots of inoculated plants also grew better in vermiculite and during acclimatization in a mixed substrate compared with roots of control plants resulting in the development of vigorous root system. Overall, mycorrhizal inoculation increased the survival rate of the regenerated pine

    Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis

    Get PDF
    The involvement of two R2R3-MYB genes from Pinus taeda L., PtMYB1 and PtMYB8, in phenylpropanoid metabolism and secondary cell wall biogenesis was investigated in planta. These pine MYBs were constitutively overexpressed (OE) in Picea glauca (Moench) Voss, used as a heterologous conifer expression system. Morphological, histological, chemical (lignin and soluble phenols), and transcriptional analyses, i.e. microarray and reverse transcription quantitative PCR (RT-qPCR) were used for extensive phenotyping of MYB-overexpressing spruce plantlets. Upon germination of somatic embryos, root growth was reduced in both transgenics. Enhanced lignin deposition was also a common feature but ectopic secondary cell wall deposition was more strongly associated with PtMYB8-OE. Microarray and RT-qPCR data showed that overexpression of each MYB led to an overlapping up-regulation of many genes encoding phenylpropanoid enzymes involved in lignin monomer synthesis, while misregulation of several cell wall-related genes and other MYB transcription factors was specifically associated with PtMYB8-OE. Together, the results suggest that MYB1 and MYB8 may be part of a conserved transcriptional network involved in secondary cell wall deposition in conifers

    Methylation levels of a novel genetic element, EgNB3 as a candidate biomarker associated with the embryogenic competency of oil palm

    Get PDF
    The association between DNA methylation status and embryogenic competency in oil palm tissue culture was examined through Representational Difference Analysis (RDA) approach, using methylation-sensitive restriction endonucleases. "Difference Products" (DPs) of RDA derived from palms of similar genetic backgrounds but exhibiting different embryogenesis rates during the regeneration process were isolated. The DPs were sequenced using a pyrosequencing platform. To our knowledge, this is the first study profiling partial HpaII methylation sites in oil palm young leaf tissues which are potentially associated with embryogenic amenability through a genomic subtractive approach. Quantitative real-time PCR analysis demonstrated that the methylation status of a novel fragment, EgNB3, was higher in highly embryogenic leaf explants compared to low embryogenesis rate materials. These differences are likely to be contributed by the 5′-mCCGG-3′ and/or 5′-mCmCGG-3′ methylation patterns. Our data suggest that the differentially methylated site in EgNB3 has potential as a molecular biomarker for the screening of oil palm leaf explants for their embryogenic potentials

    The development of highly potent and selective small molecule correctors of Z α1-antitrypsin misfolding

    Get PDF
    α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α1-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors

    A Third Measure-Metastable State in the Dynamics of Spontaneous Shape Change in Healthy Human's White Cells

    Get PDF
    Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 µm diameters and prominent, loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals. These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a healthy PMN. A third, “random” state has occasionally been reported as associated with disease states. I have observed this third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to record shape changes in 189 living PMNs. Relative radial roundness, R(t), served as a computable order parameter. Comparison of R(t) series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the “random” appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions, including increased correlation length and variance (divergence), sudden jumps, mixed phases, bimodality, power spectral scaling and temporal slowing. Wavelet transformation of an R(t) series of an Idling to Treadmilling state change, demonstrated behaviors concomitant with the observed transition
    corecore