48 research outputs found

    Probing a rate-limiting step by mutational perturbation of AdoMet binding in the HhaI methyltransferase

    Get PDF
    DNA methylation plays important roles via regulation of numerous cellular mechanisms in diverse organisms, including humans. The paradigm bacterial methyltransferase (MTase) HhaI (M.HhaI) catalyzes the transfer of a methyl group from the cofactor S-adenosyl-l-methionine (AdoMet) onto the target cytosine in DNA, yielding 5-methylcytosine and S-adenosyl-l-homocysteine (AdoHcy). The turnover rate (k(cat)) of M.HhaI, and the other two cytosine-5 MTases examined, is limited by a step subsequent to methyl transfer; however, no such step has so far been identified. To elucidate the role of cofactor interactions during catalysis, eight mutants of Trp41, which is located in the cofactor binding pocket, were constructed and characterized. The mutants show full proficiency in DNA binding and base-flipping, and little variation is observed in the apparent methyl transfer rate k(chem) as determined by rapid-quench experiments using immobilized fluorescent-labeled DNA. However, the Trp41 replacements with short side chains substantially perturb cofactor binding (100-fold higher [Formula: see text] and [Formula: see text]) leading to a faster turnover of the enzyme (10-fold higher k(cat)). Our analysis indicates that the rate-limiting breakdown of a long-lived ternary product complex is initiated by the dissociation of AdoHcy or the opening of the catalytic loop in the enzyme

    Chemical mapping of cytosines enzymatically flipped out of the DNA helix

    Get PDF
    Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in proteinā€“DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in proteinā€“DNA complexes

    Chemical mapping of cytosines enzymatically flipped out of the DNA helix

    Get PDF
    Haloacetaldehydes can be employed for probing unpaired DNA structures involving cytosine and adenine residues. Using an enzyme that was structurally proven to flip its target cytosine out of the DNA helix, the HhaI DNA methyltransferase (M.HhaI), we demonstrate the suitability of the chloroacetaldehyde modification for mapping extrahelical (flipped-out) cytosine bases in proteinā€“DNA complexes. The generality of this method was verified with two other DNA cytosine-5 methyltransferases, M.AluI and M.SssI, as well as with two restriction endonucleases, R.Ecl18kI and R.PspGI, which represent a novel class of base-flipping enzymes. Our results thus offer a simple and convenient laboratory tool for detection and mapping of flipped-out cytosines in proteinā€“DNA complexes

    Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M.HhaIā€“DNA complexes

    Get PDF
    DNA base flipping is an important mechanism in molecular enzymology, but its study is limited by the lack of an accessible and reliable diagnostic technique. A series of crystalline complexes of a DNA methyltransferase, M.HhaI, and its cognate DNA, in which a fluorescent nucleobase analogue, 2-aminopurine (AP), occupies defined positions with respect the target flipped base, have been prepared and their structures determined at higher than 2 ā„« resolution. From time-resolved fluorescence measurements of these single crystals, we have established that the fluorescence decay function of AP shows a pronounced, characteristic response to base flipping: the loss of the very short (āˆ¼100 ps) decay component and the large increase in the amplitude of the long (āˆ¼10 ns) component. When AP is positioned at sites other than the target site, this response is not seen. Most significantly, we have shown that the same clear response is apparent when M.HhaI complexes with DNA in solution, giving an unambiguous signal of base flipping. Analysis of the AP fluorescence decay function reveals conformational heterogeneity in the DNAā€“enzyme complexes that cannot be discerned from the present X-ray structures

    Enhanced nucleosome assembly at CpG sites containing an extended 5-methylcytosine analogue

    Get PDF
    Methylation of cytosine to 5-methylcytosine (mC) at CpG sites is a prevalent reversible epigenetic mark in vertebrates established by DNA methyltransferases (MTases); the attached methyl groups can alter local structure of DNA and chromatin as well as binding of dedicated proteins. Nucleosome assembly on methylated DNA has been studied extensively, however little is known how the chromatin structure is affected by larger chemical variations in the major groove of DNA. Here, we studied the nucleosome formation in vitro on DNA containing an extended 5mC analog, 5-(6-azidohex-2-ynyl)cytosine (ahyC) installed at biological relevant CpG sites. We found that multiple ahyC residues on 80-Widom and Hsp70 promoter DNA fragments proved compatible with nucleosome assembly. Moreover, unlike mC, ahyC increases the affinity of histones to the DNA, partially altering nucleosome positioning, stability, and the action of chromatin remodelers. Based on molecular dynamics calculations, we suggest that these new features are due to increased DNA flexibility at ahyC-modified sites. Our findings provide new insights into the biophysical behavior of modified DNA and open new ways for directed design of synthetic nucleosomes

    A directed evolution design of a GCG-specific DNA hemimethylase

    Get PDF
    DNA cytosine-5 methyltransferases (C5-MTases) are valuable models to study sequence-specific modification of DNA and are becoming increasingly important tools for biotechnology. Here we describe a structure-guided rational protein design combined with random mutagenesis and selection to change the specificity of the HhaI C5-MTase from GCGC to GCG. The specificity change was brought about by a five-residue deletion and introduction of two arginine residues within and nearby one of the target recognizing loops. DNA protection assays, bisulfite sequencing and enzyme kinetics showed that the best selected variant is comparable to wild-type M.HhaI in terms of sequence fidelity and methylation efficiency, and supersedes the parent enzyme in transalkylation of DNA using synthetic cofactor analogs. The designed C5-MTase can be used to produce hemimethylated CpG sites in DNA, which are valuable substrates for studies of mammalian maintenance MTases

    Direct observation of cytosine flipping and covalent catalysis in a DNA methyltransferase

    Get PDF
    Methylation of the five position of cytosine in DNA plays important roles in epigenetic regulation in diverse organisms including humans. The transfer of methyl groups from the cofactor S-adenosyl-l-methionine is carried out by methyltransferase enzymes. Using the paradigm bacterial methyltransferase M.HhaI we demonstrate, in a chemically unperturbed system, the first direct real-time analysis of the key mechanistic eventsā€”the flipping of the target cytosine base and its covalent activation; these changes were followed by monitoring the hyperchromicity in the DNA and the loss of the cytosine chromophore in the target nucleotide, respectively. Combined with studies of M.HhaI variants containing redesigned tryptophan fluorophores, we find that the target base flipping and the closure of the mobile catalytic loop occur simultaneously, and the rate of this concerted motion inversely correlates with the stability of the target base pair. Subsequently, the covalent activation of the target cytosine is closely followed by but is not coincident with the methyl group transfer from the bound cofactor. These findings provide new insights into the temporal mechanism of this physiologically important reaction and pave the way to in-depth studies of other base-flipping systems

    Disinfection control at the sausage factory

    No full text
    The thesis was carried out in Lithuanian University of Health Sciences the Faculty of Veterinary Medicine, food safety and quality department and in sausage manufactories. While writing this thesis, different means of disinfection were analyzed, their composition and effectiveness were examined. In this thesis I will compare three different means of disinfection during different conditions. Three selected disinfectants have been tested in three different sausage manufactories. The results were processed with Microsoft Excel software and checked using parametric Studentā€™s test and non-parametric Wilcoxon test. Disinfection is a very important part of the process in order to maintain a clean environment and to produce safe and good quality product. Every food business subject can choose disinfectants according to different criteria but the important thing is that the result always has to be achieved. It is important to not only choose effective disinfectants but also to use them correctly in order to achieve good results of disinfection. After disinfection with selected disinfectants and collecting samples for microbiological tests determined that the disinfectants are effective

    5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA /

    No full text
    Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease
    corecore