14 research outputs found

    The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to

    Get PDF
    The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria

    The antimalarial MMV688533 provides potential for single-dose cures with a high barrier to

    Get PDF
    The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria

    Optimisation du modèle des hépatocytes humains en culture primaire pour l'étude de la métabolisation des xénobiotiques

    No full text
    MONTPELLIER-BU MĂ©decine UPM (341722108) / SudocMONTPELLIER-BU MĂ©decine (341722104) / SudocSudocFranceF

    Applicability of second-generation upcyte®^{®} human hepatocytes for use in CYP inhibition and induction studies

    Get PDF
    Human upcyte®^{®} hepatocytes are proliferating hepatocytes that retain many characteristics of primary human hepatocytes. We conducted a comprehensive evaluation of the application of second-generation upcyte®^{®} hepatocytes from four donors for inhibition and induction assays using a selection of reference inhibitors and inducers. CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50_{50} values for each compound correctly classified them as potent inhibitors. Upcyte®^{®} hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9, and CYP3A4 inducers, confirming that they have functional AhR-, CAR-, and PXR-mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or noninducers of CYP3A4 and CYP2B6 were tested. There was a good fit of data from upcyte®^{®} hepatocytes to three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu_{u}/F2_{2}, and Cmax,u_{max,u}/Ind50_{50}. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were demonstrated. In conclusion, these data support the use of second-generation upcyte®^{®} hepatocytes for CYP inhibition and induction assays. Under the culture conditions used, these cells expressed CYP activities that were equivalent to or higher than those measured in primary human hepatocyte cultures, which could be inhibited or induced by prototypical CYP inhibitors and inducers, respectively. Moreover, they can be used to predict in vivo CYP3A4 induction potential using three prediction models. Bulk availability of cells from multiple donors makes upcyte®^{®} hepatocytes suitable for DDI screening, as well as more in-depth mechanistic investigations

    The WNT/ β -Catenin Pathway Is a Transcriptional Regulator of CYP2E1, CYP1A2, and Aryl Hydrocarbon Receptor Gene Expression in Primary Human Hepatocytes

    No full text
    MolPharm articles become freely available 12 months after publication, and remain freely available for 5 years. Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.International audienceThe wingless-type MMTV integration site family (WNT)/β-catenin/adenomatous polyposis coli (CTNNB1/APC) pathway has been identified as a regulator of drug-metabolizing enzymes in the rodent liver. Conversely, little is known about the role of this pathway in drug metabolism regulation in human liver. Primary human hepatocytes (PHHs), which are the most physiologically relevant culture system to study drug metabolism in vitro, were used to investigate this issue. This study assessed the link between cytochrome P450 expression and WNT/β-catenin pathway activity in PHHs by modulating its activity with recombinant mouse Wnt3a (the canonical activator), inhibitors of glycogen synthase kinase 3β, and small-interfering RNA to invalidate CTNNB1 or its repressor APC, used separately or in combination. We found that the WNT/β-catenin pathway can be activated in PHHs, as assessed by universal β-catenin target gene expression, leucine-rich repeat containing G protein-coupled receptor 5. Moreover, WNT/β-catenin pathway activation induces the expression of CYP2E1, CYP1A2, and aryl hydrocarbon receptor, but not of CYP3A4, hepatocyte nuclear factor-4α, or pregnane X receptor (PXR) in PHHs. Specifically, we show for the first time that CYP2E1 is transcriptionally regulated by the WNT/β-catenin pathway. Moreover, CYP2E1 induction was accompanied by an increase in its metabolic activity, as indicated by the increased production of 6-OH-chlorzoxazone and by glutathione depletion after incubation with high doses of acetaminophen. In conclusion, the WNT/β-catenin pathway is functional in PHHs, and its induction in PHHs represents a powerful tool to evaluate the hepatotoxicity of drugs that are metabolized by CYP2E1
    corecore