140 research outputs found

    Dispersion interaction between crossed conducting wires

    Full text link
    We compute the T=0KT=0K Van der Waals (nonretarded Casimir) interaction energy EE between two infinitely long, crossed conducting wires separated by a minimum distance DD much greater than their radius. We find that, up to a logarithmic correction factor, ED1sinθ1f(θ)E\propto -D^{-1}| \sin \theta | ^{-1}f(\theta) where f(θ)f(\theta) is a smooth bounded function of the angle θ\theta between the wires. We recover a conventional result of the form ED4sinθ1g(θ)E\propto -D^{-4}|\sin\theta | ^{-1}g(\theta) when we include an electronic energy gap in our calculation. Our prediction of gap-dependent energetics may be observable experimentally for carbon nanotubes, either via AFM detection of the vdW force or torque, or indirectly via observation of mechanical oscillations. This shows that strictly parallel wires, as assumed in previous predictions, are not needed to see a novel effect of this type.Comment: 4 pp, 1 fig, 1 tabl

    Parity violating cylindrical shell in the framework of QED

    Full text link
    We present calculations of Casimir energy (CE) in a system of quantized electromagnetic (EM) field interacting with an infinite circular cylindrical shell (which we call `the defect'). Interaction is described in the only QFT-consistent way by Chern-Simon action concentrated on the defect, with a single coupling constant aa. For regularization of UV divergencies of the theory we use % physically motivated Pauli-Villars regularization of the free EM action. The divergencies are extracted as a polynomial in regularization mass MM, and they renormalize classical part of the surface action. We reveal the dependence of CE on the coupling constant aa. Corresponding Casimir force is attractive for all values of aa. For aa\to\infty we reproduce the known results for CE for perfectly conducting cylindrical shell first obtained by DeRaad and Milton.Comment: Typos corrected. Some references adde

    The Casimir effect as scattering problem

    Get PDF
    We show that Casimir-force calculations for a finite number of non-overlapping obstacles can be mapped onto quantum-mechanical billiard-type problems which are characterized by the scattering of a fictitious point particle off the very same obstacles. With the help of a modified Krein trace formula the genuine/finite part of the Casimir energy is determined as the energy-weighted integral over the log-determinant of the multi-scattering matrix of the analog billiard problem. The formalism is self-regulating and inherently shows that the Casimir energy is governed by the infrared end of the multi-scattering phase shifts or spectrum of the fluctuating field. The calculation is exact and in principle applicable for any separation(s) between the obstacles. In practice, it is more suited for large- to medium-range separations. We report especially about the Casimir energy of a fluctuating massless scalar field between two spheres or a sphere and a plate under Dirichlet and Neumann boundary conditions. But the formalism can easily be extended to any number of spheres and/or planes in three or arbitrary dimensions, with a variety of boundary conditions or non-overlapping potentials/non-ideal reflectors.Comment: 14 pages, 2 figures, plenary talk at QFEXT07, Leipzig, September 2007, some typos correcte

    Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity

    Full text link
    From the beginning of the subject, calculations of quantum vacuum energies or Casimir energies have been plagued with two types of divergences: The total energy, which may be thought of as some sort of regularization of the zero-point energy, 12ω\sum\frac12\hbar\omega, seems manifestly divergent. And local energy densities, obtained from the vacuum expectation value of the energy-momentum tensor, T00\langle T_{00}\rangle, typically diverge near boundaries. The energy of interaction between distinct rigid bodies of whatever type is finite, corresponding to observable forces and torques between the bodies, which can be unambiguously calculated. The self-energy of a body is less well-defined, and suffers divergences which may or may not be removable. Some examples where a unique total self-stress may be evaluated include the perfectly conducting spherical shell first considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric balls and cylinders. In these cases the finite part is unique, yet there are divergent contributions which may be subsumed in some sort of renormalization of physical parameters. The divergences that occur in the local energy-momentum tensor near surfaces are distinct from the divergences in the total energy, which are often associated with energy located exactly on the surfaces. However, the local energy-momentum tensor couples to gravity, so what is the significance of infinite quantities here? For the classic situation of parallel plates there are indications that the divergences in the local energy density are consistent with divergences in Einstein's equations; correspondingly, it has been shown that divergences in the total Casimir energy serve to precisely renormalize the masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Decoherence by engineered quantum baths

    Full text link
    We introduce, and determine decoherence for, a wide class of non-trivial quantum spin baths which embrace Ising, XY and Heisenberg universality classes coupled to a two-level system. For the XY and Ising universality classes we provide an exact expression for the decay of the loss of coherence beyond the case of a central spin coupled uniformly to all the spins of the baths which has been discussed so far in the literature. In the case of the Heisenberg spin bath we study the decoherence by means of the time-dependent density matrix renormalization group. We show how these baths can be engineered, by using atoms in optical lattices.Comment: 4 pages, 4 figure

    Can One Trust Quantum Simulators?

    Full text link
    Various fundamental phenomena of strongly-correlated quantum systems such as high-TcT_c superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by "simulation" with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a "quantum simulator," would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question "Can we trust quantum simulators?" is... to some extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional explanations, added references...

    Entanglement spectrum degeneracy and the Cardy formula in 1+1 dimensional conformal field theories

    Get PDF
    We investigate the effect of a global degeneracy in the distribution of the entanglement spectrum in conformal field theories in one spatial dimension. We relate the recently found universal expression for the entanglement Hamiltonian to the distribution of the entanglement spectrum. The main tool to establish this connection is the Cardy formula. It turns out that the Affleck-Ludwig non-integer degeneracy, appearing because of the boundary conditions induced at the entangling surface, can be directly read from the entanglement spectrum distribution. We also clarify the effect of the noninteger degeneracy on the spectrum of the partial transpose, which is the central object for quantifying the entanglement in mixed states. We show that the exact knowledge of the entanglement spectrum in some integrable spinchains provides strong analytical evidences corroborating our results

    From the sinh-Gordon field theory to the one-dimensional Bose gas: exact local correlations and full counting statistics

    Get PDF
    We derive exact formulas for the expectation value of local observables in a one-dimensional gas of bosons with point-wise repulsive interactions (Lieb-Liniger model). Starting from a recently conjectured expression for the expectation value of vertex operators in the sinh-Gordon field theory, we derive explicit analytic expressions for the one-point K-body correlation functions \u27e8(\u3a8\u2020)K(\u3a8)K\u27e9 in the Lieb-Liniger gas, for arbitrary integer K. These are valid for all excited states in the thermodynamic limit, including thermal states, generalized Gibbs ensembles and non-equilibrium steady states arising in transport settings. Our formulas display several physically interesting applications: most prominently, they allow us to compute the full counting statistics for the particle-number fluctuations in a short interval. Furthermore, combining our findings with the recently introduced generalized hydrodynamics, we are able to study multi-point correlation functions at the Eulerian scale in non-homogeneous settings. Our results complement previous studies in the literature and provide a full solution to the problem of computing one-point functions in the Lieb Liniger model
    corecore