32 research outputs found
Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens
BACKGROUND: Transgenic proteins expressed by genetically modified food crops are evaluated for their potential allergenic properties prior to marketing, among others by identification of short identical amino acid sequences that occur both in the transgenic protein and allergenic proteins. A strategy is proposed, in which the positive outcomes of the sequence comparison with a minimal length of six amino acids are further screened for the presence of potential linear IgE-epitopes. This double track approach involves the use of literature data on IgE-epitopes and an antigenicity prediction algorithm. RESULTS: Thirty-three transgenic proteins have been screened for identities of at least six contiguous amino acids shared with allergenic proteins. Twenty-two transgenic proteins showed positive results of six- or seven-contiguous amino acids length. Only a limited number of identical stretches shared by transgenic proteins (papaya ringspot virus coat protein, acetolactate synthase GH50, and glyphosate oxidoreductase) and allergenic proteins could be identified as (part of) potential linear epitopes. CONCLUSION: Many transgenic proteins have identical stretches of six or seven amino acids in common with allergenic proteins. Most identical stretches are likely to be false positives. As shown in this study, identical stretches can be further screened for relevance by comparison with linear IgE-binding epitopes described in literature. In the absence of literature data on epitopes, antigenicity prediction by computer aids to select potential antibody binding sites that will need verification of IgE binding by sera binding tests. Finally, the positive outcomes of this approach warrant further clinical testing for potential allergenicity
Preface to the special issue of Food and Chemical Toxicology on the outcomes of the MARLON project on veterinary epidemiology of potential health impacts of genetically modified feeds in livestock
peer-reviewedPreface to the special issue of Food and Chemical Toxicology on the outcomes of the MARLON project
Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops
The potential effects of horizontal gene transfer on human health are an important item in the safety assessment of genetically modified organisms. Horizontal gene transfer from genetically modified crops to gut microflora most likely occurs with transgenes of microbial origin. The characteristics of microbial transgenes other than antibiotic-resistance genes in market-approved genetically modified crops are reviewed. These characteristics include the microbial source, natural function, function in genetically modified crops, natural prevalence, geographical distribution, similarity to other microbial genes, known horizontal transfer activity, selective conditions and environments for horizontally transferred genes, and potential contribution to pathogenicity and virulence in humans and animals. The assessment of this set of data for each of the microbial genes reviewed does not give rise to health concerns. We recommend including the above-mentioned items into the premarket safety assessment of genetically modified crops carrying transgenes other than those reviewed in the present study
Allermatch™, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines
BACKGROUND: Novel proteins entering the food chain, for example by genetic modification of plants, have to be tested for allergenicity. Allermatch™ is a webtool for the efficient and standardized prediction of potential allergenicity of proteins and peptides according to the current recommendations of the FAO/WHO Expert Consultation, as outlined in the Codex alimentarius. DESCRIPTION: A query amino acid sequence is compared with all known allergenic proteins retrieved from the protein databases using a sliding window approach. This identifies stretches of 80 amino acids with more than 35% similarity or small identical stretches of at least six amino acids. The outcome of the analysis is presented in a concise format. The predictive performance of the FAO/WHO criteria is evaluated by screening sets of allergens and non-allergens against the Allermatch databases. Besides correct predictions, both methods are shown to generate false positive and false negative hits and the outcomes should therefore be combined with other methods of allergenicity assessment, as advised by the FAO/WHO. CONCLUSIONS: Allermatch™ provides an accessible, efficient, and useful webtool for analysis of potential allergenicity of proteins introduced in genetically modified food prior to market release that complies with current FAO/WHO guidelines
GMDD: a database of GMO detection methods
<p>Abstract</p> <p>Background</p> <p>Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed.</p> <p>Results</p> <p>GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked.</p> <p>Conclusion</p> <p>GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier.</p
Recommended from our members
Developing Global Leaders for Research, Regulation, and Stewardship of Crop Protection Chemistry in the 21st Century
To provide sufficient food and fiber to the increasing global population, the technologies associated with crop protection are growing ever more sophisticated but, at the same time, societal expectations for the safe use of crop protection chemistry tools are also increasing. The goal of this perspective is to highlight the key issues that face future leaders in crop protection, based on presentations made during a symposium titled “Developing Global Leaders for Research, Regulation and Stewardship of Crop Protection Chemistry in the 21st Century”, held in conjunction with the IUPAC 13th International Congress of Pesticide Chemistry in San Francisco, CA, USA, during August 2014. The presentations highlighted the fact that leaders in crop protection must have a good basic scientific training and understand new and evolving technologies, are aware of the needs of both developed and developing countries, and have good communication skills. Concern is expressed over the apparent lack of resources to meet these needs, and ideas are put forward to remedy these deficiencies.Keywords: sustainable agriculture, developing regions, training leaders, smart systems, stewardship, women in agriculture, crop protection, universities, nanopesticides, communications, GM crop
Food safety assessment of crops engineered with RNA interference and other methods to modulate expression of endogenous and plant pest genes
Genetically modified crops have been grown commercially for more than two decades. Some of these crops have been modified with genetic constructs that induce gene silencing through RNA interference (RNAi). The targets for this silencing action are genes, either specific endogenous ones of the host plant or those of particular pests or pathogens infesting these plants.Recently emerging new genetic tools enable precise DNA edits with the same silencing effect and have also increased our knowledge and insights into the mechanisms of RNAi. For the assessment of the safety of foodstuffs from crops modified with RNAi, internationally harmonized principles for risk assessment of foods derived from genetically modified crops can be fol-lowed. Special considerations may apply to the newly expressed silencing RNA molecules, such as their possible uptake by consumers and interference with expression of host genes, which, however, would need to overcome many barriers. Bioinformatics tools aid the prediction of possible interference by a given RNA molecule with the expression of genes with homologous sequences in the host crop and in other organisms, or possible off-target edits in gene-edited crops
Reactions of the organic matrix in dentin caries
Het laboratorium- en literatuuronderzoek in dit proefschrift betreft de mogelijke effecten van reacties van de organische matrix van dentine op cariës