8 research outputs found

    Pretreatment with perfluorohexane vapor attenuates fMLP-induced lung injury in isolated perfused rabbit lungs

    No full text
    The authors investigated the protective effects and dose dependency of perfluorohexane (PFH) vapor on leukocyte-mediated lung injury in isolated, perfused, and ventilated rabbit lungs. Lungs received either 18 vol.% (n = 7), 9 vol.% (n = 7), or 4.5 vol.% (n = 7) PFH. Fifteen minutes after beginning of PFH application, lung injury was induced with formyl-Met-Leu-Phe (fMLP). Control lungs (n = 7) received fMLP only. In addition 5 lungs (PFH-sham) remained uninjured receiving 18 vol.% PFH only. Pulmonary artery pressure (mPAP), peak inspiratory pressure (P(max)), and lung weight were monitored for 90 minutes. Perfusate samples were taken at regular intervals for analysis and representative lungs were fixed for histological analysis. In the control, fMLP application led to a significant increase of mPAP, P(max), lung weight, and lipid mediators. Pretreatment with PFH attenuated the rise in these parameters. This was accompanied by preservation of the structural integrity of the alveolar architecture and air-blood barrier. In uninjured lungs, mPAP, P(max), lung weight, and lipid mediator formation remained uneffected in the presence of PFH. The authors concluded that pretreatment with PFH vapor leads to an attenuation of leukocyte-mediated lung injury. Vaporization of perfluorocarbons (PFCs) offers new therapeutic options, making use of their protective and anti-inflammatory properties in prophylaxis or in early treatment of acute lung injury

    Influence of Lipid Saturation Grade and Headgroup Charge: A Refined Lung Surfactant Adsorption Model

    Get PDF
    Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4 mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place

    Solubility versus Electrostatics: What Determines Lipid/Protein Interaction in Lung Surfactant

    Get PDF
    Mammalian lung surfactant is a complex lipid/protein mixture covering the alveolar interface and has the crucial function of reducing the surface tension at this boundary to minimal values. Surfactant protein SP-B plays an important role for this purpose and was the focus of many recent studies. However, the specificity of lipid/SP-B interactions is controversial. Since these investigations were accomplished at varying pH conditions (pH 5.5 and 7.0), we studied the specificity of these interactions in a dipalmitoylphosphatidylcholine (DPPC)/dipalmitoylphosphatidylglycerol (DPPG)/SP-B (4:1:0.2 mol %) model system at either pH. Mainly fluorescence microscopy and laterally resolved time-of-flight secondary ion mass spectrometry were used to reveal information about the phase behavior of the lipids and the molecular distribution of SP-B in the lipid mixture. DPPG forms separated condensed domains due to a strong hydrogen-bond network, from which the protein is mainly excluded. Considering the protein as an impurity of the lipid mixture leads to the principle of the zone melting process: an impurity is highly more soluble in a liquid phase than in a solid phase. The phase behavior effect of the lipids mainly outperforms the electrostatic interactions between DPPG and SP-B, leading to a more passively achieved colocalization of DPPC and SP-B

    Differential Effects of the Hydrophobic Surfactant Proteins on the Formation of Inverse Bicontinuous Cubic Phases

    Get PDF
    Prior studies have shown that the biological mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, produces faster adsorption of the surfactant lipids to an air/water interface, and that they induce 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) to form inverse bicontinuous cubic phases. SP-B has a much greater effect than SP-C on adsorption. If the two proteins induce formation of the bicontinuous structures and faster adsorption by similar mechanisms, then they should also have differential ability to form the cubic phases. To test this hypothesis, we measured small angle X-ray scattering on the individual proteins combined with POPE. SP-B replicated the doserelated ability of the combined proteins to induce the cubic phases at temperatures more than 25°C below the point at which POPE alone forms the curved inverse-hexagonal phase. With SP-C, diffraction from cubic structures was either absent or present only with larger amounts of protein at low intensities. The correlation between the structural effects of inducing curved structures and the functional effects on the rate of adsorption fits with the model in which SP-B promotes adsorption by facilitating formation of a negatively curved, rate-limiting intermediate structure
    corecore