108 research outputs found

    Quantum optical coherence tomography with dispersion cancellation

    Full text link
    We propose a new technique, called quantum optical coherence tomography (QOCT), for carrying out tomographic measurements with dispersion-cancelled resolution. The technique can also be used to extract the frequency-dependent refractive index of the medium. QOCT makes use of a two-photon interferometer in which a swept delay permits a coincidence interferogram to be traced. The technique bears a resemblance to classical optical coherence tomography (OCT). However, it makes use of a nonclassical entangled twin-photon light source that permits measurements to be made at depths greater than those accessible via OCT, which suffers from the deleterious effects of sample dispersion. Aside from the dispersion cancellation, QOCT offers higher sensitivity than OCT as well as an enhancement of resolution by a factor of 2 for the same source bandwidth. QOCT and OCT are compared using an idealized sample.Comment: 19 pages, 4 figure

    Ab initio and finite-temperature molecular dynamics studies of lattice resistance in tantalum

    Full text link
    This manuscript explores the apparent discrepancy between experimental data and theoretical calculations of the lattice resistance of bcc tantalum. We present the first results for the temperature dependence of the Peierls stress in this system and the first ab initio calculation of the zero-temperature Peierls stress to employ periodic boundary conditions, which are those best suited to the study of metallic systems at the electron-structure level. Our ab initio value for the Peierls stress is over five times larger than current extrapolations of experimental lattice resistance to zero-temperature. Although we do find that the common techniques for such extrapolation indeed tend to underestimate the zero-temperature limit, the amount of the underestimation which we observe is only 10-20%, leaving open the possibility that mechanisms other than the simple Peierls stress are important in controlling the process of low temperature slip.Comment: 12 pages and 9 figure

    Schottky barrier heights at polar metal/semiconductor interfaces

    Full text link
    Using a first-principle pseudopotential approach, we have investigated the Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100) junctions, and their dependence on the semiconductor chemical composition and surface termination. A model based on linear-response theory is developed, which provides a simple, yet accurate description of the barrier-height variations with the chemical composition of the semiconductor. The larger barrier values found for the anion- than for the cation-terminated surfaces are explained in terms of the screened charge of the polar semiconductor surface and its image charge at the metal surface. Atomic scale computations show how the classical image charge concept, valid for charges placed at large distances from the metal, extends to distances shorter than the decay length of the metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    A comprehensive re-assessment of the association between vitamin D and cancer susceptibility using Mendelian randomization

    Get PDF
    Abstract: Previous Mendelian randomization (MR) studies on 25-hydroxyvitamin D (25(OH)D) and cancer have typically adopted a handful of variants and found no relationship between 25(OH)D and cancer; however, issues of horizontal pleiotropy cannot be reliably addressed. Using a larger set of variants associated with 25(OH)D (74 SNPs, up from 6 previously), we perform a unified MR analysis to re-evaluate the relationship between 25(OH)D and ten cancers. Our findings are broadly consistent with previous MR studies indicating no relationship, apart from ovarian cancers (OR 0.89; 95% C.I: 0.82 to 0.96 per 1 SD change in 25(OH)D concentration) and basal cell carcinoma (OR 1.16; 95% C.I.: 1.04 to 1.28). However, after adjustment for pigmentation related variables in a multivariable MR framework, the BCC findings were attenuated. Here we report that lower 25(OH)D is unlikely to be a causal risk factor for most cancers, with our study providing more precise confidence intervals than previously possible
    corecore