764 research outputs found
Universal behavior of the IMS domain formation in superconducting niobium
In the intermediate mixed state (IMS) of type-II/1 superconductors, vortex
lattice (VL) and Meissner state domains coexist due to a partially attractive
vortex interaction. Using a neutron-based multiscale approach combined with
magnetization measurements, we study the continuous decomposition of a
homogeneous VL into increasingly dense domains in the IMS in bulk niobium
samples of varying purity. We find a universal temperature dependence of the
vortex spacing, closely related to the London penetration depth and independent
of the external magnetic field. The rearrangement of vortices occurs even in
the presence of a flux freezing transition, i.e. pronounced pinning, indicating
a breakdown of pinning at the onset of the vortex attraction
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
© 2014 Author(s). Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis
Trehalose Is A Chemical Attractant In The Establishment Of Coral Symbiosis
Coral reefs have evolved with a crucial symbiosis between photosynthetic dinoflagellates (genus Symbiodinium) and their cnidarian hosts (Scleractinians). Most coral larvae take up Symbiodinium from their environment; however, the earliest steps in this process have been elusive. Here we demonstrate that the disaccharide trehalose may be an important signal from the symbiont to potential larval hosts. Symbiodinium freshly isolated from Fungia scutaria corals constantly released trehalose (but not sucrose, maltose or glucose) into seawater, and released glycerol only in the presence of coral tissue. Spawning Fungia adults increased symbiont number in their immediate area by excreting pellets of Symbiodinium, and when these naturally discharged Symbiodinium were cultured, they also released trehalose. In Y-maze experiments, coral larvae demonstrated chemoattractant and feeding behaviors only towards a chamber with trehalose or glycerol. Concomitantly, coral larvae and adult tissue, but not symbionts, had significant trehalase enzymatic activities, suggesting the capacity to utilize trehalose. Trehalase activity was developmentally regulated in F. scutaria larvae, rising as the time for symbiont uptake occurs. Consistent with the enzymatic assays, gene finding demonstrated the presence of a trehalase enzyme in the genome of a related coral, Acropora digitifera, and a likely trehalase in the transcriptome of F. scutaria. Taken together, these data suggest that adult F. scutaria seed the reef with Symbiodinium during spawning and the exuded Symbiodinium release trehalose into the environment, which acts as a chemoattractant for F. scutaria larvae and as an initiator of feeding behavior- the first stages toward establishing the coral-Symbiodinium relationship. Because trehalose is a fixed carbon compound, this cue would accurately demonstrate to the cnidarian larvae the photosynthetic ability of the potential symbiont in the ambient environment. To our knowledge, this is the first report of a chemical cue attracting the motile coral larvae to the symbiont
Searching for optimal variables in real multivariate stochastic data
By implementing a recent technique for the determination of stochastic
eigendirections of two coupled stochastic variables, we investigate the
evolution of fluctuations of NO2 concentrations at two monitoring stations in
the city of Lisbon, Portugal. We analyze the stochastic part of the
measurements recorded at the monitoring stations by means of a method where the
two concentrations are considered as stochastic variables evolving according to
a system of coupled stochastic differential equations. Analysis of their
structure allows for transforming the set of measured variables to a set of
derived variables, one of them with reduced stochasticity. For the specific
case of NO2 concentration measures, the set of derived variables are well
approximated by a global rotation of the original set of measured variables. We
conclude that the stochastic sources at each station are independent from each
other and typically have amplitudes of the order of the deterministic
contributions. Such findings show significant limitations when predicting such
quantities. Still, we briefly discuss how predictive power can be increased in
general in the light of our methods
Composition and Nutritive Value of Corn Fractions and Ethanol Co-products Resulting from a New Dry-milling Process
The development of a new dry-milling process for the production of corn ethanol has resulted in new feedstuffs. This process fractionates the corn kernel prior to fermentation. Pre-fermentation fractions include bran, germ, and endosperm. Post-fermentation fractions include dried distillers grains (DDG) and condensed distiller solubles (syrup). Proximate analysis was conducted on these fractions along with the parent corn sample. Equations were used to predict TDN and undegradable intake protein (UIP). These feeds differ substantially from historical dried distiller’s grains with solubles (DDGS). Feeding experiments will be necessary to confirm the results of the predicted feed values
Near-bed and surface flow division patterns in experimental river bifurcations
Understanding channel bifurcation mechanics is of great importance for predicting and managing multichannel river processes and avulsion in distributary river deltas. To date, research on river channel bifurcations has focused on factors determining the stability and evolution of bifurcations. It has recently been shown that, theoretically, the nonlinearity of the relation between sediment transport and flow discharge causes one of the two distributaries of a (slightly) asymmetrical bifurcation to grow and the other to shrink. The positive feedback introduced by this effect results in highly asymmetrical bifurcations. However, there is a lack of detailed insight into flow dynamics within river bifurcations, the consequent effect on bed load flux through bifurcating channels, and thus the impact on bifurcation stability over time. In this paper, three key parameters (discharge ratio, width-to-depth ratio, and bed roughness) were varied in order to examine the secondary flow field and its effect on flow partitioning, particularly near-bed and surface flow, at an experimental bifurcation. Discharge ratio was controlled by varying downstream water levels. Flow fields were quantified using both particle image velocimetry and ultrasonic Doppler velocity profiling. Results show that a bifurcation induces secondary flow cells upstream of the bifurcation. In the case of unequal discharge ratio, a strong increase in the secondary flow near the bed causes a larger volume of near-bed flow to enter the dominant channel compared to surface and depth-averaged flow. However, this effect diminishes with larger width-to-depth ratio and with increased bed roughness. The flow structure and division pattern will likely have a stabilizing effect on river channel bifurcations. The magnitude of this effect in relation to previously identified destabilizing effects is addressed by proposing an adjustment to a widely used empirical bed load nodal-point partition equation. Our finding implies that river bifurcations can be stable under a wider range of conditions than previously thought. Key Points Secondary flow in symmetrical bifurcations causes strong near-bed flow curvature A disproportional amount of near-bed flow enters the dominant downstream channel Flow curvature adds a stabilizing feedback on bifurcation evolution
- …