2,160 research outputs found

    World Nematic Crystal Model of Gravity Explaining the Absence of Torsion

    Full text link
    Assuming that at small distances space-time is equivalent to an elastic medium which is isotropic in space and time directions, we demonstrate that the quantum nematic liquid arising from this crystal by spontaneous proliferation of dislocations corresponds with a medium which is merely carrying curvature rigidity. This medium is at large distances indistinguishable from Einstein's spacetime of general relativity. It does not support torsion and possesses string-like curvature sources which in spacetime form world surfaces.Comment: 4 pages, submitted to Phys. Let. B: this is a polished version of gr-qc/030703

    Variational Perturbation Theory for Fokker-Planck Equation with Nonlinear Drift

    Full text link
    We develop a recursive method for perturbative solutions of the Fokker-Planck equation with nonlinear drift. The series expansion of the time-dependent probability density in terms of powers of the coupling constant is obtained by solving a set of first-order linear ordinary differential equations. Resumming the series in the spirit of variational perturbation theory we are able to determine the probability density for all values of the coupling constant. Comparison with numerical results shows exponential convergence with increasing order.Comment: Author Information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir

    Modelling two-dimensional Crystals with Defects under Stress: Superelongation of Carbon Nanotubes at high Temperatures

    Full text link
    We calculate analytically the phase diagram of a two-dimensional square crystal and its wrapped version with defects under external homogeneous stress as a function of temperature using a simple elastic lattice model that allows for defect formation. The temperature dependence turns out to be very weak. The results are relevant for recent stress experiments on carbon nanotubes. Under increasing stress, we find a crossover regime which we identify with a cracking transition that is almost independent of temperature. Furthermore, we find an almost stress-independent melting point. In addition, we derive an enhanced ductility with relative strains before cracking between 200-400%, in agreement with carbon nanotube experiments. The specific values depend on the Poisson ratio and the angle between the external force and the crystal axes. We give arguments that the results for carbon nanotubes are not much different to the wrapped square crystal.Comment: 12 pages, 6 eps figures, section VI added discussing the modifications of our model when applied to tube

    Brownian motion of Massive Particle in a Space with Curvature and Torsion and Crystals with Defects

    Full text link
    We develop a theory of Brownian motion of a massive particle, including the effects of inertia (Kramers' problem), in spaces with curvature and torsion. This is done by invoking the recently discovered generalized equivalence principle, according to which the equations of motion of a point particle in such spaces can be obtained from the Newton equation in euclidean space by means of a nonholonomic mapping. By this principle, the known Langevin equation in euclidean space goes over into the correct Langevin equation in the Cartan space. This, in turn, serves to derive the Kubo and Fokker-Planck equations satisfied by the particle distribution as a function of time in such a space. The theory can be applied to classical diffusion processes in crystals with defects.Comment: LaTeX, http://www.physik.fu-berlin.de/kleinert.htm

    Recursive Graphical Construction for Feynman Diagrams of Quantum Electrodynamics

    Get PDF
    We present a method for a recursive graphical construction of Feynman diagrams with their correct multiplicities in quantum electrodynamics. The method is first applied to find all diagrams contributing to the vacuum energy from which all n-point functions are derived by functional differentiation with respect to electron and photon propagators, and to the interaction. Basis for our construction is a functional differential equation obeyed by the vacuum energy when considered as a functional of the free propagators and the interaction. Our method does not employ external sources in contrast to traditional approaches.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/29

    Interpretation of experimental data near lambda-transition point in liquid helium

    Full text link
    The recently published experimental data for specific heat C_p of liquid helium in zero gravity conditions very close to the lambda-transition have been discussed. We have shown that these data allow different interpretations. They can be well interpreted within the perturbative RG approach and within our recently developed theory, as well. Allowing the logarithmic correction, the corresponding fits lie almost on top of each other over the whole range of the reduced temperatures t (for bin averaged data) 6.3 x 10^{-10} < t < 8.8 x 10^{-3}. However, the plot of the effective exponent alpha_eff(t) suggests that the behaviour of C_p, probably, changes very close to the lambda-transition temperature. To clarify this question, we need more accurate data for t<10^{-7}. In addition, we show that the experimental data for superfluid fraction of liquid helium close to the critical point within 3 x 10^{-7} < t < 10^{-4} can be better fit by our exponents nu=9/13, Delta=5/13 than by the RG exponents (nu approximately 0.6705 and Delta about 0.5). The latter ones are preferable to fit the whole measured range 3 x 10^{-7} < t < 10^{-2} where, however, remarkable systematic deviations appear. Our estimated value 0.694 +/- 0.017 of the asymptotic exponent nu well agrees with the theoretical prediction nu=9/13.Comment: 9 pages, 4 figures. The first version was a preliminary one. Now it is substentially extended and coincides with the published pape

    Autoparallels From a New Action Principle

    Full text link
    We present a simpler and more powerful version of the recently-discovered action principle for the motion of a spinless point particle in spacetimes with curvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion with a torsion force, thus changing geodesics to autoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure of parallelograms in the presence of torsionComment: Paper in src. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly with Netscape under http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm
    corecore