112 research outputs found
Level 1b error budget for MIPAS on ENVISAT
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a Fourier transform spectrometer measuring the radiance emitted from the atmosphere in limb geometry in the thermal infrared spectral region. It was operated onboard the ENVISAT satellite from 2002 to 2012. Calibrated and geolocated spectra, the so-called level 1b data, are the basis for the retrieval of atmospheric parameters. In this paper we present the error budget for the level 1b data of the most recent data version 8 in terms of radiometric, spectral, and line of sight accuracy. The major changes of version 8 compared to older versions are also described. The impact of the different error sources on the spectra is characterized in terms of spectral, vertical, and temporal correlation because these correlations have an impact on the quality of the retrieved quantities. The radiometric error is in the order of 1% to 2.4%, the spectral accuracy is better than 0.3ppm, and the line of sight accuracy at the tangent point is around 400m. All errors are well within the requirements, and the achieved accuracy allows atmospheric parameters to be retrieved from the measurements with high quality
Quantification and mitigation of the instrument effects and uncertainties of the airborne limb imaging FTIR GLORIA
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an infrared imaging FTS (Fourier transform spectrometer) with a 2-D infrared detector that is operated on two high-flying research aircraft. It has flown on eight campaigns and measured along more than 300 000 km of flight track.This paper details our instrument calibration and characterization efforts, which, in particular, almost exclusively leverage in-flight data. First, we present the framework of our new calibration scheme, which uses information from all three available calibration sources (two blackbodies and upward-pointing “deep space” measurements). Part of this scheme is a new algorithm for correcting the erratically changing nonlinearity of a subset of detector pixels and the identification of the remaining bad pixels.Using this new calibration, we derive a 1σ bound of 1 % on the instrument gain error and a bound of 30 nW cm−2 sr−1 cm on the instrument offset error. We show how we can examine the noise and spectral accuracy for all measured atmospheric spectra and derive a spectral accuracy of 5 ppm on average. All these errors are compliant with the initial instrument requirements.We also discuss, for the first time, the pointing system of the GLORIA instrument. Combining laboratory calibration efforts with the measurement of astronomical bodies during the flight, we can achieve a pointing accuracy of 0.032∘, which corresponds to one detector pixel.The paper concludes with a brief study of how these newly characterized instrument parameters affect temperature and ozone retrievals. We find that the pointing uncertainty and, to a lesser extent, the instrument gain uncertainty are the main contributors to the error in the result
Retrieval of Water Vapour Profiles from GLORIA Nadir Observations
We present the first analysis of water vapour profiles derived from nadir measurements by the infrared imaging Fourier transform spectrometer GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). The measurements were performed on 27 September 2017, during the WISE (Wave driven ISentropic Exchange) campaign aboard the HALO aircraft over the North Atlantic in an area between 37°–50°N and 20°–28°W. From each nadir recording of the 2-D imaging spectrometer, the spectral radiances of all non-cloudy pixels have been averaged after application of a newly developed cloud filter. From these mid-infrared nadir spectra, vertical profiles of H2O have been retrieved with a vertical resolution corresponding to five degrees of freedom below the aircraft. Uncertainties in radiometric calibration, temperature and spectroscopy have been identified as dominating error sources. Comparing retrievals resulting from two different a priori assumptions (constant exponential vs. ERA 5 reanalysis data) revealed parts of the flight where the observations clearly show inconsistencies with the ERA 5 water vapour fields. Further, a water vapour inversion at around 6 km altitude could be identified in the nadir retrievals and confirmed by a nearby radiosonde ascent. An intercomparison of multiple water vapour profiles from GLORIA in nadir and limb observational modes, IASI (Infrared Atmospheric Sounding Interferometer) satellite data from two different retrieval processors, and radiosonde measurements shows a broad consistency between the profiles. The comparison shows how fine vertical structures are represented by nadir sounders as well as the influence of a priori information on the retrievals
Biomass burning pollution in the South Atlantic upper troposphere: GLORIA trace gas observations and evaluation of the CAMS model
In this study, we present simultaneous airborne measurements of peroxyacetyl nitrate (PAN), ethane (C2H6), formic acid (HCOOH), methanol (CH3OH), and ethylene (C2H4) above the South Atlantic in September and October 2019. Observations were obtained from the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), as two-dimensional altitude cross sections along the flight path. The flights were part of the SouthTRAC (Transport and Composition in the Southern Hemisphere Upper Troposphere/Lower Stratosphere) campaign with the German High Altitude and Long Range Research Aircraft (HALO). On two flights (8 September 2019 and 7 October 2019), large enhancements of all these substances were found between 7 and 14 km altitude with maximum volume mixing ratios (VMRs) of 1000 pptv for PAN, 1400 pptv for C2H6, 800 pptv for HCOOH, 4500 pptv for CH3OH, and 200 pptv for C2H4. One flight showed a common filamentary structure in the trace gas distributions, while the second flight is characterized by one large plume. Using backward trajectories, we show that measured pollutants likely reached upper troposphere and lower stratosphere (UTLS) altitudes above South America and central Africa, where elevated PAN VMRs are visible at the surface layer of the Copernicus Atmosphere Monitoring Service (CAMS) model during the weeks before both measurements. In comparison to results of the CAMS reanalysis interpolated onto the GLORIA measurement geolocations, we show that the model is able to reproduce the overall structure of the measured pollution trace gas distributions. For PAN, the absolute VMRs are in agreement with the GLORIA measurements. However, C2H6 and HCOOH are generally underestimated by the model, while CH3OH and C2H4, the species with the shortest atmospheric lifetimes of the pollution trace gases discussed, are overestimated by CAMS. The good agreement between model and observations for PAN suggests that the general transport pathways and emissions locations are well captured by the model. The poorer agreement for other species is therefore most likely linked to model deficiencies in the representation of loss processes and emission strength
The Hong Kong Principles for assessing researchers: Fostering research integrity
For knowledge to benefit research and society, it must be trustworthy. Trustworthy research is robust, rigorous, and transparent at all stages of design, execution, and reporting. Assessment of researchers still rarely includes considerations related to trustworthiness, rigor, and transparency. We have developed the Hong Kong Principles (HKPs) as part of the 6th World Conference on Research Integrity with a specific focus on the need to drive research improvement through ensuring that researchers are explicitly recognized and rewarded for behaviors that strengthen research integrity. We present five principles: responsible research practices; transparent reporting; open science (open research); valuing a diversity of types of research; and recognizing all contributions to research and scholarly activity. For each principle, we provide a rationale for its inclusion and provide examples where these principles are already being adopted.</p
TUNER-compliant error estimation for MIPAS
This paper describes the error estimation for temperature and trace gas mixing ratios retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) limb emission spectra. The following error sources are taken into account: measurement noise, propagated temperature and pointing noise, uncertainties of the abundances of spectrally interfering species, instrument line shape errors, and spectroscopic data uncertainties in terms of line intensities and broadening coefficients. Furthermore, both the direct impact of volatile as well as persistent gain calibration uncertainties, offset calibration and spectral calibration uncertainties and their impact through propagated calibration-related temperature and pointing uncertainties are considered. An error source specific to the MIPAS upper atmospheric observation mode is the propagation of the smoothing error crosstalk of the combined NO and temperature retrieval. Whenever non-local thermodynamic equilibrium modelling is used inthe retrieval, also related kinetic constants and mixing ratios of species involved in the modelling of populations of excitational states contribute to the error budget. Both generalized Gaussian error propagation and perturbation studies are used to estimate the error components. Error correlations are taken into account. Estimated uncertainties are provided for a multitude of atmospheric conditions. Some error sources were found to contribute both to the random and the systematic component of the total estimated error. The sequential nature of the MIPAS retrievals gives rise to entangled errors. These are caused by error sources that affect the uncertainty of the final data product via multiple pathways, i.e., on the one hand directly, and on the other hand via errors caused in a preceding retrieval step. These errors tend to partly compensate each other. The hard-to-quantify effect of the horizontally non-homogeneous atmosphere and unknown error correlations of spectroscopic data are considered as the major limitations of the MIPAS error estimation
TUNER-compliant error estimation for MIPAS: methodology
This paper describes the error estimation for temperature and trace gas mixing ratios retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) limb emission spectra. The following error sources are taken into account: measurement noise, propagated temperature and pointing noise, uncertainties of the abundances of spectrally interfering species, instrument line shape errors, and spectroscopic data uncertainties in terms of line intensities and broadening coefficients. Furthermore, both the direct impact of volatile as well as persistent gain calibration uncertainties, offset calibration and spectral calibration uncertainties and their impact through propagated calibration-related temperature and pointing uncertainties are considered. An error source specific to the MIPAS upper atmospheric observation mode is the propagation of the smoothing error crosstalk of the combined NO and temperature retrieval. Whenever non-local thermodynamic equilibrium modelling is used inthe retrieval, also related kinetic constants and mixing ratios of species involved in the modelling of populations of excitational states contribute to the error budget. Both generalized Gaussian error propagation and perturbation studies are used to estimate the error components. Error correlations are taken into account. Estimated uncertainties are provided for a multitude of atmospheric conditions. Some error sources were found to contribute both to the random and the systematic component of the total estimated error. The sequential nature of the MIPAS retrievals gives rise to entangled errors. These are caused by error sources that affect the uncertainty of the final data product via multiple pathways, i.e., on the one hand directly, and on the other hand via errors caused in a preceding retrieval step. These errors tend to partly compensate each other. The hard-to-quantify effect of the horizontally non-homogeneous atmosphere and unknown error correlations of spectroscopic data are considered as the major limitations of the MIPAS error estimation
Long-term validation of MIPAS ESA operational products using MIPAS-B measurements
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was a limb-viewing infrared Fourier transform spectrometer that operated from 2002 to 2012 aboard the Environmental Satellite (ENVISAT). The final re-processing of the full MIPAS mission Level 2 data was performed with the ESA operational version 8 (v8) processor. This MIPAS dataset includes not only the retrieval results of pressure–temperature and the standard species H2O, O3, HNO3, CH4, N2O, and NO2 but also vertical profiles of volume mixing ratios of the more difficult-to-retrieve molecules N2O5, ClONO2, CFC-11, CFC-12 (included since v6 processing), HCFC-22, CCl4, CF4, COF2, and HCN (included since v7 processing). Finally, vertical profiles of the species C2H2, C2H6, COCl2, OCS, CH3Cl, and HDO were additionally retrieved by the v8 processor.
The balloon-borne limb-emission sounder MIPAS-B was a precursor of the MIPAS satellite instrument. Several flights with MIPAS-B were carried out during the 10-year operational phase of ENVISAT at different latitudes and seasons, including both operational periods when MIPAS measured with full spectral resolution (FR mode) and with optimised spectral resolution (OR mode). All MIPAS operational products (except HDO) were compared to results inferred from dedicated validation limb sequences of MIPAS-B. To enhance the statistics of vertical profile comparisons, a trajectory match method has been applied to search for MIPAS coincidences along the 2 d forward and backward trajectories running from the MIPAS-B measurement geolocations. This study gives an overview of the validation results based on the ESA operational v8 data comprising the MIPAS FR and OR observation periods. This includes an assessment of the data agreement of both sensors, taking into account the combined errors of the instruments. The differences between the retrieved temperature profiles of both MIPAS instruments generally stays within ±2 K in the stratosphere. For most gases – namely H2O, O3, HNO3, CH4, N2O, NO2, N2O5, ClONO2, CFC-11, CFC-12, HCFC-22, CCl4, CF4, COF2, and HCN – we find a 5 %–20 % level of agreement for the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere. For the species C2H2, C2H6, COCl2, OCS, and CH3Cl, however, larger differences (within 20 %–50 %) appear in this altitude range
- …