3,212 research outputs found
Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip
We experimentally study the diffraction of a Bose-Einstein condensate from a
magnetic lattice, realized by a set of 372 parallel gold conductors which are
micro fabricated on a silicon substrate. The conductors generate a periodic
potential for the atoms with a lattice constant of 4 microns. After exposing
the condensate to the lattice for several milliseconds we observe diffraction
up to 5th order by standard time of flight imaging techniques. The experimental
data can be quantitatively interpreted with a simple phase imprinting model.
The demonstrated diffraction grating offers promising perspectives for the
construction of an integrated atom interferometer.Comment: 4 pages, 4 figure
Simulation of I-V Hysteresis Branches in An Intrinsic Stack of Josephson Junctions in High Superconductors
I-V characteristics of the high T superconductor
BiSrCaCO shows a strong hysteresis, producing many
branches. The origin of hysteresis jumps is studied by use of the model of
multi-layered Josephson junctions proposed by one of the authors (T. K.). The
charging effect at superconducting layers produces a coupling between the next
nearest neighbor phase-differences, which determines the structure of
hysteresis branches. It will be shown that a solution of phase motions is
understood as a combination of rotating and oscillating phase-differences, and
that, at points of hysteresis jumps, there occurs a change in the number of
rotating phase-differences. Effects of dissipation are analyzed. The
dissipation in insulating layers works to damp the phase motion itself, while
the dissipation in superconducting layers works to damp relative motions of
phase-differences. Their effects to hysteresis jumps are discussed.Comment: 18 pages, Latex, 8 figures. To be appear in Phys.Rev.B Vol.60(1999
Visualizing supercurrents in ferromagnetic Josephson junctions with various arrangements of 0 and \pi segments
Josephson junctions with ferromagnetic barrier can have positive or negative
critical current depending on the thickness of the ferromagnetic layer.
Accordingly, the Josephson phase in the ground state is equal to 0 (a
conventional or 0 junction) or to ( junction). When 0 and
segments are joined to form a "0- junction", spontaneous supercurrents
around the 0- boundary can appear. Here we report on the visualization of
supercurrents in superconductor-insulator-ferromagnet-superconductor (SIFS)
junctions by low-temperature scanning electron microscopy (LTSEM). We discuss
data for rectangular 0, , 0-, 0--0 and 20 \times 0-
junctions, disk-shaped junctions where the 0- boundary forms a ring, and
an annular junction with two 0- boundaries. Within each 0 or segment
the critical current density is fairly homogeneous, as indicated both by
measurements of the magnetic field dependence of the critical current and by
LTSEM. The parts have critical current densities up to
35\units{A/cm^2} at T = 4.2\units{K}, which is a record value for SIFS
junctions with a NiCu F-layer so far. We also demonstrate that SIFS technology
is capable to produce Josephson devices with a unique topology of the 0-
boundary.Comment: 29 pages, 8 figure
Interference patterns of multifacet 20x(0-pi-) Josephson junctions with ferromagnetic barrier
We have realized multifacet Josephson junctions with periodically alternating
critical current density (MJJs) using
superconductor-insulator-ferromagnet-superconductor heterostructures. We show
that anomalous features of critical current vs. applied magnetic field,
observed also for other types of MJJs, are caused by a non-uniform flux density
(parallel to the barrier) resulting from screening currents in the electrodes
in the presence of a (parasitic) off-plane field component.Comment: submitted to PR
Charge-imbalance effects in intrinsic Josephson systems
We report on two types of experiments with intrinsic Josephson systems made
from layered superconductors which show clear evidence of nonequilibrium
effects: 1. In 2-point measurements of IV-curves in the presence of high-
frequency radiation a shift of the voltage of Shapiro steps from the canonical
value hf/(2e) has been observed. 2. In the IV-curves of double-mesa structures
an influence of the current through one mesa on the voltage measured on the
other mesa is detected. Both effects can be explained by charge-imbalance on
the superconducting layers produced by the quasi-particle current, and can be
described successfully by a recently developed theory of nonequilibrium effects
in intrinsic Josephson systems.Comment: 8pages, 9figures, submitted to Phys. Rev.
Transport, magnetic, and structural properties of LaCeMnO thin films. Evidence for hole-doping
Cerium-doped manganite thin films were grown epitaxially by pulsed laser
deposition at C and oxygen pressure Pa and were
subjected to different annealing steps. According to x-ray diffraction (XRD)
data, the formation of CeO as a secondary phase could be avoided for
Pa. However, transmission electron microscopy shows the presence
of CeO nanoclusters, even in those films which appear to be single phase in
XRD. With O annealing, the metal-to-insulator transition temperature
increases, while the saturation magnetization decreases and stays well below
the theoretical value for electron-doped LaCeMnO with mixed
Mn/Mn valences. The same trend is observed with decreasing film
thickness from 100 to 20 nm, indicating a higher oxygen content for thinner
films. Hall measurements on a film which shows a metal-to-insulator transition
clearly reveal holes as dominating charge carriers. Combining data from x-ray
photoemission spectroscopy, for determination of the oxygen content, and x-ray
absorption spectroscopy (XAS), for determination of the hole concentration and
cation valences, we find that with increasing oxygen content the hole
concentration increases and Mn valences are shifted from 2+ to 4+. The
dominating Mn valences in the films are Mn and Mn, and only a
small amount of Mn ions can be observed by XAS. Mn and Ce
XAS signals obtained in surface-sensitive total electron yield mode are
strongly reduced in the bulk-sensitive fluorescence mode, which indicates
hole-doping in the bulk for those films which do show a metal-to-insulator
transition.Comment: 8 pages, 10 figure
Cold atoms near superconductors: Atomic spin coherence beyond the Johnson noise limit
We report on the measurement of atomic spin coherence near the surface of a
superconducting niobium wire. As compared to normal conducting metal surfaces,
the atomic spin coherence is maintained for time periods beyond the Johnson
noise limit. The result provides experimental evidence that magnetic near field
noise near the superconductor is strongly suppressed. Such long atomic spin
coherence times near superconductors open the way towards the development of
coherently coupled cold atom / solid state hybrid quantum systems with
potential applications in quantum information processing and precision force
sensing.Comment: Major revisions of the text for submission to New Journal of Physics
8 pages, 4 figure
Commensurability effects in superconducting Nb films with quasiperiodic pinning arrays
We study experimentally the critical depinning current Ic versus applied
magnetic field B in Nb thin films which contain 2D arrays of circular antidots
placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to
the transition temperature Tc we observe matching of the vortex lattice with
the QP pinning array, confirming essential features in the Ic(B) patterns as
predicted by Misko et al. [Phys. Rev. Lett, vol.95, 177007 (2005)]. We find a
significant enhancement in Ic(B) for QP pinning arrays in comparison to Ic in
samples with randomly distributed antidots or no antidots.Comment: 4 pages, 3 figure
Superconductivity and Stoichiometry in the BSCCO-family Materials
We report on magnetization, c-axis and ab-plane resistivity, critical
current, electronic band structure and superconducting gap properties. Bulk
measurements and photoemission data were taken on similar samples.Comment: 4 pages, latex, to be published in Journal of Superconductivity. two
figures available from Jian Ma at [email protected]
- …